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Abstract 

A survey of the symmetries of the two-dimensional 
scattering Hamiltonian of fast electrons is presented 
in order to minimize the size of the effective diffraction 
matrix. The principle of the method is to decompose 
the initial Hilbert space into the irreducible invariant 
subspaces corresponding to the different irreducible 
representations of the symmetry group of the Hamil- 
tonian and to perform the diagonalization only into 
those subspaces which share common representations 
with the initial state. Both unitary and anti-unitary 
operators are considered. The analysis is based on 
space-group representations and applies for both 
symmorphic and non-symmorphic space groups. 

Introduction 

The dynamical theories for high-energy electron 
diffraction are essentially based on two complemen- 
tary approaches: the quantum-mechanical matrix for- 
mulation (Sturkey, 1957, 1962; Tournarie, 1960; 
Howie & Whelan, 1961; Kambe, 1967) and the diffrac- 
tion optics derivation (Cowley & Moodie, 1957; 
Cowley, 1975). Both theories are physically equiv- 
alent (Goodman & Moodie, 1974; Van Dyck, 1980); 
the first has been mostly developed for conven- 
tional electron microscopy whereas the second is 
essentially used for high-resolution calculations with 
the so-called multi-slice technique (Goodman & 
Moodie, 1974). A main advantage of the multi-slice 
technique is that it obviates the time- and space- 
consuming diagonalization of the diffraction matrix 
used in the quantum-mechanical approach by an 
iterative slice-to-slice calculation. Propagation and 
diffraction are treated separately, the first in 
reciprocal space and the second in real space. A 
disadvantage is that the accuracy of the method may 
decrease with increasing sample thickness whereas 
the diagonalization technique does not diverge, what- 
ever the thickness of the sample. The multi-slice tech- 
nique requires the extensive use of the fast Fourier 
transform algorithm for switching from reciprocal to 
direct space and vice versa at each step, which needs 
a large number of Fourier coefficients in order to 
remain accurate enough after many iterations. The 
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essence of the matrix formulation is to make the 
optimum change of basis at once, i.e. to formulate 
the propagation of electrons in the solid on the natural 
eigenbasis of the Hamiltonian instead of switching 
from real to reciprocal space at each slice. Therefore, 
the number of beams introduced in the matrix method 
does not play the same role as in the multi-slice 
method and can be of a smaller size: it represents the 
dimension of the subspace of the Hilbert space upon 
which the minimization process of the diffracting 
Hamiltonian is performed. Once the lowest few eigen- 
vectors of the Hamiltonian are sufficiently well 
approximated in this subspace, the calculation is as 
accurate as it is for a far larger number of 'beams' in 
the multi-slice method. But probably a substantial 
interest of the quantum-mechanical method is that it 
provides an elegant and clear formalism for the basic 
understanding of dynamical diffraction and allows 
for many versatile formal developments in a simple 
manner. 

The purpose of the present paper is to give an 
extended description of the use of the symmetry 
properties of the diffraction process in the quantum- 
mechanical technique and to show how they may 
considerably simplify the dynamical calculations for 
high symmetry orientations. 

The paper is divided as follows: in the first section, 
the general properties of symmetry of the scattering 
Hamiltonian are discussed. The rest of the paper is 
devoted to some explicit applications of the symmetry 
reduction technique with special attention to the case 
of non-symmorphic space groups and convergent- 
beam analyses. 

I. Dynamical scattering Hamiltonian 

The scattering of fast electrons by solids can be 
approximated by a two-dimensional (2D) pseudo- 
Hamiltonian, H, where the propagation direction is 
analogous to the time parameter in usual time-depen- 
dent quantum theory (Berry, 1971; Van Dyck, 1980; 
Gratias & Portier, 1983): 

2 K z n  = ~, lq)(q2-x2)(q]+ ~ [q')(q']T'(p, z)]q)(q[, 
q (q,q') 

(1) 
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where X is the reciprocal vector from the projection 
of the centre of the Ewald sphere to the origin of the 
reciprocal lattice, Kz the z component of the incident- 
beam wave vector and q the set of 2D momentum 
transfer vectors (Fig. 1): 

q = x + G  (2) 

where G is a reciprocal-lattice vector. ~ (p ,  z) is the 
scattering potential and (q'l°V(p, z)[q) its 2D Fourier 
transform normalized by the 2D unit volume to: 

(q ' l~(p,  z)lq) = (1/o~) ~ ~(p ,  z) 
to 

xexp[2i 'n'(q-q') .p]d2p. (3) 

It is easily shown from (1) that the propagation 
term is diagonal on the reciprocal-space basis (set of 
plane waves), whereas the diffraction term ~(p ,  z) is 
diagonal on the real-space basis (set of Dirac masses). 

A common further approximation consists of 
replacing the z-dependent potential by an average 
potential along the z propagation direction. This 
approximation has been shown to be valid for rapidly 
oscillating potentials along the z direction. Designat- 
ing the resulting Fourier component by Vq, q, and the 
thickness of the sample by t, so that 

l 

Vq.q, = t -t ~ (q'l °//'(p, z)lq ) dz, (4) 
o 

we obtain a reduced normalized z independent 
Hamiltonian ~g where the eigenvalues are now shifted 
relative to the constant X 2 obliquity factor: 

A~=~lq)q2(ql+ ~ Iq)Vq, q,(q'[. (5) 
q (q, q') 

The diagonal term (self excitation) increases quad- 
ratically with Iql whereas the off-diagonal terms 
decrease to zero for large Iql values; for reciprocal 
nodes far away from the Ewald sphere, the Hamil- 
tonian is almost diagonal in such a manner that there 
will be no noticeable transition between such states 
and the initial one Ix). It is therefore possible to limit 
the {]q)} basis to those kets whose self excitation is 

f~ 

Ko Kg 

/ / o  o 
Fig. 1. Definition of the dynamical parameters; Ko is the incident 

wave vector, ~o is the projection of the centre of the Ewald sphere 
onto the diffracting plane and X is the obliquity vector toO where 
O is the origin of the reciprocal space. A diffracting vector is 
defined by q =X + G where G is a reciprocal-lattice vector. 

not too large compared with the upper value of the 
I Vq.q.l' s. 

The scattering Hamiltonian is a 2D version of the 
familiar one-electron Hamiltonian. As a consequence 
of that, the diagonalization can always be performed 
for initial states IX) with wave vectors lying within 
the first Brillouin zone. For instance, the simulation 
of a tilted dark-field image requires no additional 
calculations once the diagonalization has been 
achieved in bright field. The tilting consists essentially 
of a relabelling of the incident and diffracted beams. 

The diffracted beams and images are obtained after 
standard diagonalization techniques. If ~j) and yj are 
the eigenvectors and eigenvalues of (5), the evolution 
operator ~ ( z )  at thickness z is written as 

~ ( z )  = ~ IJ) exp (i*rr:)(jl ,  (6a) 
i 

leading to the expressions of the diffracted beams 
q0q(z) and images #(p ,  z): 

~ q ( Z ) - - - - ( q l C Z ( z ) I x ) =  X (qlJ) exp (i~r'y:)(jlx) (6b) 
| 

# ( p , z ) =  2 ( p l q ' ) e x p [ - i ~ ( q ' , q ) ] ( q [ ~ ( z ) l x )  , 
(q,q') 

(6c) 

where qb(q, q') represents the phase of the aberration 
function. 

A similar derivation can be carried out for quasi- 
crystals with the only difference that the set of q 
vectors to be considered is a Z modulus* instead of 
being on a 2D lattice (Cornier, Portier & Gratias, 
1986). In any case, each individual q vector is uniquely 
labelled by a set of N integer indices ( N = 3  for 
crystals, N = 3 + d  for d-dimensional modulated 
structures and N > 3 for quasicrystals). A common 
feature of presently recognized topologically long- 
range ordered structures is the fact that the observable 
reflections are located at finite distances from each 
other, leading to a discrete aspect of the diffraction 
pattern, even if the geometric measure of the Fourier 
transform is mathematically dense. One of the major 
problems in simulating this kind of structure with the 
multi-slice technique is the absence of periodicity in 
physical space which makes the use of fast Fourier 
transforms impossible without introducing an 
artificial periodicity. In the quantum-mechanical 
approach, the only problem is the criterion of select- 
ing, among a dense set, only those beams which 
actually are predominant in the diffraction. It turns 
out that a substantial number of beams is required 
for avoiding numerical instabilities in the diagonaliz- 

* A I modulus is a vector space built on a ring; in the present 
case, the ring is the set of the natural integers and the Z modulus 
is isomorphic to a lattice in a space of dimension equal to the rank 
of the Z modulus. 
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ation process. For example, an exact fivefold orienta- 
tion of an icosahedral quasicrystal shows a diffraction 
pattern with more than 500 excited beams. An 
artificial truncation in the number of beams may lead 
to important variations in the eigenvalues and eigen- 
vectors of the scattering Hamiltonian. In such cases 
of high-symmetry patterns, the beam reduction tech- 
nique is the most efficient: the original 561 beams 
reduce to a final dynamical matrix with only 37 orbits 
(Cornier et al., in preparation). 

II. Symmetries and beam reductions 

The calculation of the evolution operator (6a) is 
largely simplified by introducing the symmetry 
operations of the system which lead to a primary 
block diagonalization. The physical guideline of the 
beam reduction technique is the following: the 
dynamical theory consists in calculating the transition 
probabilities between the initial state IX) and a given 
chosen state Iq); this probability has to satisfy two 
basic conditions if it is not to be trivially zero: 

(i) there must exist eigenvectors of (5) with the 
same symmetry as IX); 

(ii) among these states, only those also having the 
same symmetry as [q) have to be considered; for 
instance if IX) and Iq) belong to two orthogonal sym- 
metry states, the transition probability is zero. 

Hence, the sole eigenstates required for the diffrac- 
tion calculation are those which transform according 
to the irreducible representations of the symmetry 
group of the Hamiltonian which are common to both 
the initial and the final states. 

Such beam reductions were proposed several years 
ago for specific cases (Blume, 1966; Fukuhara, 1966; 
Fisher, 1968; Tinnappel & Kambe, 1975; Kogiso & 
Takahashi, 1977; Vergasov, Chukhovskii & Pinsker, 
1982) and a systematic procedure based on space- 
group symmetry has recently been published (Takeda, 
1986, 1987) in the framework of the Howie & Whelan 
(1961) formulation. Our main purpose in the present 
paper is to give an explicit derivation consistent with 
the quantum-mechanical formalism in including both 
the unitary and anti-unitary symmetries of the system. 
The key point of our technique consists of expressing 
all operators directly in the Hilbert space which 
reduces the handling of group representation theory 
to elementary algebraic calculations. 

Also of primary importance in the recent develop- 
ment of the convergent-beam technique is the recogni- 
tion of actual symmetries of the observed 3 D structure 
from 2D diffraction patterns. Discussions on the sym- 
metry of the convergent-beam patterns are numerous 
and well documented, especially with the publication 
of the impressive paper by Buxton, Eades, Steeds & 
Rackham (1976) (see also Eades, 1980). We will dis- 
cuss here some of these previous results in the 
framework of group theory as developed by Wigner 

(1932) for general anti-unitary operators and show 
how it unites the different approaches to this subject. 
Special attention will be given to the case of non- 
symmorphic space groups in the totally symmetrical 
Laue position. 

II.1. 2D invariance space group of the Hamiltonian 

The 2D invariance space group of the Hamiltonian 
is the 2D space group of the projected structure for 
any value of X. For a general X, the application of 
the symmetry elements of the projected structure gen- 
erally transforms a q vector of the reciprocal lattice 
into a vector which does not belong to the same 
reciprocal lattice (remember that q is a diffraction 
vector originating from the projection of the Ewald 
sphere and not from the origin of the reciprocal 
lattice). The number r /o f  different reciprocal lattices 
induced by the symmetry group of the projected 
potential is obtained in the following way: let ~g be 
the centred holohedral group of the reciprocal 2D 
lattice and let ~d x be the little group of X defined by 

~x = {g ~ ~, gx = X + G}. (7) 

The number ~ of independent reciprocal lattices 
is the index of ~d x onto ~d: 

"q = index(~dx/~d). (8) 

Of course, only the reciprocal lattice generated by 
the X vector is excited in practice and the effective 
space group is ~d x. However, we will see that consider- 
ing the fully symmetric basis (set of all reciprocal 
lattices deduced by the symmetry of the projected 
potential) helps in understanding the hidden sym- 
metries of the Hamiltonian in the general case. 

II.2. Symmetry operations in Hilbert space; 
eigenvectors and eigenvalues 

There are two basic types of symmetry operations: 
those which transform the propagation direction into 
itself and those which invert it; Although they all are 
essentially the geometric unitary operations induced 
by the 3D symmetries of the solid, the latter are 
equivalent to the products of 2D symmetry operations 
by the time-reversal anti-unitary operator Yf (see 
Messiah, 1965). 

In the bracket notation, a 2D symmetry operation 
(alt) acting as (a l t )p=  a p + t  in direct space (Seitz, 
1936) can be written in Hilbert space as 

(a It) = Y~ la-lq) exp(2iTrqt)(ql. (9) 
q 

Such unitary operators correspond to the 3D sym- 
metry operations which preserve the z direction. They 
have a matrix representation which consists of an 
infinite set of diagonal blocks, each block containing 
the star of the q vector considered. A special case of 
those operators is the translation operators, (liT), 
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which are diagonal on the Hilbert {Iq)} basis with 
eigenvalues exp(2izrqT), 

( l iT)  = ~ Iq) exp(2iTrqT)(ql. (10) 
q 

The basic anti-unitary transformation ~ [defined 
as In in Buxton et al.'s (1976) notation] is defined by 

(vl(~lu)) = Y. (vl -q)(qlu)* ( l l a )  
q 

( (v l~ ) lu ) - -  Z (vl - q)*(qlu). ( l lb )  
q 

Multiplication of this anti-unitary operator by any 
of the former unitary operations leads to the other 
basic 'R-type '  operations, say ~ ' :  

( ,~ ' lu ) )  = Y~ I - q ) (q lu ) *  = ( 2 n l u ) * )  (128) 
q 

( ~ ' ( 21O) lu ) )  = Y~ I -  2q ) (q lu ) *  
q 

= Z Iq)(q lu)*  = ( l n l o ) * )  (12b) 
q 

(~C'(mlt)lu)) = Y I -  mq) exp(-2iTrq.t)(qlu)* 
q 

= (mRIU)*) . (12C) 

The cornerstone of the beam reduction technique 
is a change of the {Iq)} basis of the Hilbert space into 
a symmetry-adapted basis constructed with the eigen- 
vectors of these symmetry operations and selection 
of the irreducible subspaces that transform according 
to the initial IX) state. 

The rotations in 2D space are always reducible [an 
origin can be chosen for the rotation operator to be 
written as (a  10)]. The set of the corresponding eigen- 
vectors (,O k and eigenvectors ]Q~)  are, for each n x n 
block, 

n - I  

IQ~)) =~n/--~o ~°Jklqk)' (13) 

where n is the order of the rotation, to = e 2i'/" and 
qk are the vectors of the q star induced by the rotation 
considered. 

Mirrors (mlt) can be pure ( t = T )  or glide (t = T / 2 )  
(the four non-symmorphic 2D space groups are pg, 
pmg, pgg and p4g). Their eigenvectors and eigen- 
values are, for each (q, mq) 2 × 2 block, 

(~) 1 
]Qg ) = ~  {]q)+ exp[ iTr(q- mq)t][mq)} 

A I = exp[ ilr(q + mq)t] (14a) 

Finally, it is easily shown that for each pair (q, - q ) ,  
the orthogonal vectors [uq) and [Vq) defined by 

1 i 
l u q ) = ~  (lq)+l-q)); lvq)--~  (lq)- l-q)) 

(15) 

are eigenvectors of the basic anti-unitary operation ~. 

III. B e a m  reduct ion from ant i -uni tary  operat ions  

III.1. Real Homiltonion and real basis 

In the absence of a phenomenological absorption 
term, the ~ operator commutes with the Hamiltonian 
( ~  is a real operator) and therefore a basis can always 
be found for which the coefficients of the Hamiltonian 
are real numbers. This basis is defined by the eigen- 
vectors ]u) and Iv) of ~ which are the adequate real 
basis for the Hamiltonian of non-centrosymmetric 
structures (for the centrosymmetric case, the Hamil- 
tonian basis is real ab initio). The explicit calculation 
of the matrix elements of the Hamiltonian gives 

(uq,l:~luq>-- q2ao.q,+lVq, ql cos ~q,q +lVq,,-~l cos ~ ,_~ 

(v¢l~lvq) = q2aq, q,+lVq, ql cos ~q,,~ 

- I  Vq',-ql cos ~q, _q (16) 

<uq,l~lvq> = -IVq,,ql sin ~q,,q-IV-q,,ql sin ~_q,q 

<Vq,I ~'lu~> = I v~,.ql sin ~q,q + I v~,.-ql sin ,pq,,_q 

where Vq, q = I Vq,,ql exp(i~q,,q). 
Of course, the initial state IX) has now to be written 

as 

1 
IX) -- ~ ( lu~)-  ilvx)) 

-- 1 , 0 , 0 , . . . , ~ , 0 , 0 , . . . , 0  . (17)  

Two cases have to be considered (Fig. 2): if the 
initial obliquity vector X is such that 2 X = G, a vector 
of the reciprocal lattice, then q and - q  belong to the 
same.lattice and V_¢,q is generally not zero, but the 

~ j s  0 - . q /  i s  J 

i I ~' 

(2) 1 
IQ~ ) = ~  {Iq)-exp[ iTr(q- mq)t]lmq)} 

A2 = --Al. (14b) 

Fig. 2. For X in general position, it is useful to introduce the 
different virtual reciprocal lattices which restore the full sym- 
metry of the projected potential; each time X is at a special 
position, these lattices superimpose on top of each other, leading 
to beam reduction. 
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number  of rows and columns of the matrix is the 
same as the initial number  of beams. The reduction 
has the effect of  only t ransforming the Hermit ian  
matrix into an equivalent  N ×  N real symmetr ic  
matrix. This means that the Hamil tonian  matrix is 
real for diffractions in which one at least of  the 
diffracting beams is in the exact Bragg position, 
independent  of  the actual symmetry of the structure. 
If q3 x contains either 2R (centrosymmetric  structures) 
or 1R (projection of the Ewald sphere at some special 
positions) then the excited reciprocal-lattice vectors 
already form a real basis when properly coupled by 
the lUq) and I%) eigenvectors defined by 

1 
luq):  ~ [Iq) + (~'lq))] (18a) 

- i  
Ivq) = ~ [ Iq)-  (~'lq))]. (18b) 

If X is at a general location then the introduct ion 
of an addi t ional  reciprocal lattice centred at -X  
increases the number  of  rows and columns by a factor 
of two but again leads to a new 2 N  x 2 N  real sym- 
metric matrix. In this latter case, all terms of  the kind 
Vq,._q are zero in the set of  expressions (16). 

This s imple analysis shows that for the very impor- 
tant case of  the Laue symmetrical  orientation (X = 0) 
it is always possible to t ransform the scattering matrix 
into a real symmetrical  one of the same size, whatever 
the symmetry of the structure. The expressions of the 
diffracted beams are 

(~q(Z) = ½[(uql  (z)lux) ÷ 

+i((vql°U(z)lu~)-(u.l~U(z)G>)]. (19) 

III.2. The 2l-fold dynamical extinction (Gjannes & 
Moodie, 1965) 

As quoted before, the general anti-unitary 
operations used in electron microscopy result in the 
product of  the time-reversal operation 9{ with any of 
the unitary operations. There are special interesting 
cases where the reciprocal lattice transforms into itself 
by a binary anti-unitary operator which is not ~ itself. 
Such is the case in the example  seen in Fig. 3(a) ,  
where the projection of the Ewald sphere is located 
on the mid-perpendicu la r  of  a G reciprocal vector 
along a mirror  direction defining the x axis; the 
anti-unitary invariance is due to the mR operator and 
not to 1R. The ' two-colour '  2D space group cox* is 
the union 

% = G x U ( m R l t ) G  x, (20) 

where G x is a subgroup of the symmetry group of 

* Actually the g roup  would  be bet ter  designated as a double  
group  ra ther  than a colour  g roup  since the coset conta ins  anti- 
unitary operations. 

the projected potential,  say Ga~, defined by 

G~:{(~It); V[((~It)p]= V(p)}, 
such that 

The coset 
operations 

(21a) 

G,~ = {(a It)~ ~3~; a X = X + G } .  (21b) 

(mR It)G~ contains the anti-unitary 

mRX = -X + G. (22) 

The basic properties of  this anti-unitary operator 
depend on the square of the operator (see Wigner, 
1932), 

(mRlt)2=r,  lq) exp[2irr(mq+q)t](ql. (23) 
q 

First of  all, the phases of the diagonal  terms are 
equal: let G be the reciprocal-lattice vector associated 
with q, q = X + G; mG + G is along the x axis and has 
an even h index;  the translat ion t is either a primitive 
translat ion (pure mirror) or t = T/2  (glide) in such a 
manner  that for any q and any type of mirror, the 
scalar product  ( m G + G ) t  is an integer. If the mirror 
is pure, the remaining term e x p [ 2 i ~ r ( m ~ + x ) t  ] is 
equal to 1. For a glide, this term is either +1 if  X is 

. . . . .  . . . .  , . . . .  , 

i i 
O O 

i 
. . . .  . . . .  . . . .  

I ', k,  ¢o', ', ', 
', I x / l \  L ,,, _" ', 
l : - - ' / 'R  ~, - , i  ! 

(a) 

~ 2 =  1 

I 
' I F  

~2_ 2 1 ~],2=- 1 ~ =_] 

~ 2 =  1 

I 
~ 2 =  I 

I 
0.o 1.0 2,0 

Fig. 3. (a) If X is on the mid-perpendicular of a diffracting vector 
with a pg, ping or p4g 2D space group, the --mRX lattice 
superimposes exactly with the original reciprocal lattice. (b) In 
that case, the effective anti-unitary operation ~ involved in the 
problem has a square operator equal to +1 according to the 
location of X. If the square is equal to -1, then the q vector 
equal to -mRx is dynamically absent. 
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Table 1. Character table for the three possible restricted space groups (pm, pg and cm ) of  a diffracting vector 

qb = 2~r  X . t  

G ~ = p m  ( l l 0 ,  n~) ( l l l ,  n~) (112, n~.) ... (m~10,  n~.) ( m ~ ] l ,  ny)  ( m x l 2 ,  n~.) ... 
F ( X )  l e i¢" e 2iea ... 1 e ''t' e 2 ~  ... 

G x = p g  (1 [0 ,  ny)  (111,  n r )  (I  12, n,.) ... ( taxi½, ny)  ( m ,  [23, n~.) ... 
F ( X )  1 e ~ e 2 '~  ... e i~I'/2 e i3q'/2 ... 

G x = c r n  (110,  n r )  (111,  ny)  ... (I  [ -~, ny)  (1 [ ~, ny)  ... ( rn ,  I 0, n , ) ( m~ I 1, n , )  ... (m~ I -~, n ,  ) (m~ [~, n ,  ) 
I ' (~()  1 e ia' ... e i~'/2 e i3~'/2 ... I e ~a' ... e ' ~ /2  e ~3'~/z 

on the mid-perpendicular of an even-h-index reflec- 
tion, or -1  if it is on the mid-diagonal of a.n odd-h- 
index reflection (see Fig. 3b): 

~ '2=exp[2 iTr (mx+x) t ]=+l .  (24) 

The case 5~ ' 2 = - 1  corresponds to a basic rule of 
dynamical absence: from a simple examination of the 
geometry of the diffraction pattern it is easily shown 
that the q vector defined by q = - m  X satisfies the 
relations 

(:~lq)) = l - m q )  exp(-2iTrqt) :  IX) exp(-2iTrqt) 

(25a) 

((XI~() = exp( -2 i z rmx t ) ( -mx l  : exp(2izrqt)(ql, 

(25b) 

such that the diffracted amplitude can be written as 

(ql ~ Ix) = £ '(q I J) exp( iTry~z)(j I X) 
J 

+ (ql(~lJ) ) exp( izrTjz )((jl ~+ )Ix) 
(26) 

where the eigenstates I J) have been recombined by 
pairs I J) and (5~lj)). After a few algebraic manipula- 
tions using the properties of ~ and the relations (25), 
we finally obtain 

(ql ~tlx) = £ '(q I J) exp(iTryjz)(Jlx) 
] 

- (q l j )  exp( izrysz)(jlx)=O , (27) 

which shows that, for this particular chosen q vector 
and this orientation, the diffracted intensity is zero 
for a glide mirror: this is the well known 21-fold 
extinction first demonstrated in a famous paper by 
Gj0nnes & Moodie (1965) (geometrical locus noted 
B in their original paper). Interestingly enough, we 
notice here that this extinction is due to anti-unitary 
symmetry with the consequence that this extinction 
should appear only for the elastic part of the diffrac- 
tion spectrum. 

IV. Beam reduction from unitary operations 

Most of the efficiency of the beam reduction technique 
arises from the unitary operations for high-symmetry 
orientations of the incident beam. From now on, we 

shall restrict our attention to the sole unitary coset 
G~ of ~x as defined in (21). 

Let us designate by restricted little group Yx the 
subgroup of G x defined by 

~,~ = {(a It)c G,~; aX =X}. (28) 

If X is along a special line (a mirror), say the x 
axis, passing through the origin, the only possible 
restricted groups are pm, Cm or pg. We can sort the 
symmetry elements of Yx by regrouping in the same 
class all the symmetry elements which differ only by 
the translation part such that the differences between 
any two translations satisfy X • t = n. If X is generic, 
there will be an infinite discrete number of such 
classes. By contrast, if X projects at a rational position 
along x then the number of classes will be finite. In 
all cases, the ket IX) defines an irreducible representa- 
tion (because of dimension 1), say F(X), of Yx. The 
character tables for pm, pg and Cm are given in Table 
1. The same procedure can be applied starting from 
a ket Iq) associated with a q vector aligned along the 
x axis (and, therefore, with the same restricted little 
group). For pm and Cm groups, the two representa- 
tions F(X) and F(q) are the same since q and X differ 
by a reciprocal-lattice translation and pm and Cm 
have only primitive translation operations. For the 
pg group, the 1/2 non-primitive translation along x 
generates two possible representations for F(q) 
according to the parity of the index h of q. Only one 
of those representations is identical to F(X); the 
reflections with odd h index have a different rep- 
resentation from X and therefore zero transition prob- 
ability; this is the first geometrical locus in the original 
Gjcinnes & Moodie (1965) derivation (labelled locus 
A in their paper). Contrary to locus B seen in the 
preceding section, this extinction rule arises from 
unitary transformation and applies as well for elastic 
as for inelastic scattering. 

V. Examples 

V.1. The fully symmetrical Laue case 

The most important case of non-trivial symmetry 
of the incident beam is the symmetrical Laue case 
defined by X = 0. This case is of primary importance 
in high-resolution imaging and the beam reduction 
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technique is both efficient and especially simple to 
apply. This is actually the case which has been most 
studied with respect to the point-group symmetry. 
The present approach, including the translational 
symmetry, allows for the derivation of beam reduction 
in the case of non-symmorphic space groups. 

The invariance space group of X is obviously the 
invariance space group of the projected structure 

3'x = G~v. (29) 

It is therefore sufficient to construct - if it exists - 
the totally symmetric linear combination associated 
with diffracting q star and to remove all the other 
possible combinations. The dimension of the per- 
tinent scattering matrix is then equal to the number 
of excited orbits. This problem is simple for the case 
of symmorphic space groups but requires some addi- 
tional considerations in the non-symmorphic case. 

We first assume that the dynamically absent orbits 
(locus A due to glide mirrors) have been eliminated. 
Let 3'q be the restricted little group defined by (28) 
of a given allowed q vector; 3'q is a subgroup of 3'x. 
The totally symmetric ket, say [Qq), is obtained by 
coset decomposition of 3'~ onto 3',: 

3'x = 0 (akltk)3'q, (30) 
k= i  

where each coset t ransforms the arb i t rary  in i t ia l  
chosen representative, say qo, of the q star into its 
equivalents qk and n is the index of 3'~ onto 3",. The 
representation of 3'x on the q orbit is obtained by 
calculating the transforms of the ket [qo) by each of 
the n cosets: 

(akltk)3"q[qo)=exp(2iTrqo.tk)lak]qo). (31) 

The totally symmetric linear combination sought 
is therefore 

I Q q ) = ~ n  n exp(2ffrqo.tk)lqk). (32) 
k = l  

For symmorphic space groups, this relation leads 
to the well known totally symmetric sum, but gives 
non-trivial results when applied to the non-symmor- 
phic space groups. The values of the phase coefficients 
'l~k =exp(2iTrqo. tk)  a r e  given in Fig. 4 for the four 
cases of non-symmorphic 2D space groups. 

The calculation of the Hamiltonian-reduced matrix 
is given by 

1 1 
(Qq'l~lQo)- 4- ~ 

x ~ exp[2i~r(qo.tk-qg.t~,,)](q'l~'lq), 
(k,k') 

(33) 
as illustrated in Fig. 5. 

As a first example, let us consider the case of the 
exact sixfold orientation of a 3"x = p 6 m  projected 
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Fig. 4. Signs of the trivial symmetric linear combination of beams 
in the Laue orientation for the four cases of non-symmorphic 
2D space groups. 

S v,3 2 
la) 

3 ~ 2 © 
(b) 

Fig. 5. (a) Diagrammatic representation of the diagonal element 
of the reduced Hamiltonian in the Laue symmetric case; the 
effective excitation error is the sum of all internal interactions 
between the beams of the orbit. (b) For off-diagonal elements 
the effective potential is the sum of the interactions of one 
arbitrary beam in one orbit with all the beams of the other orbit. 
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crystal where three q stars are excited (13 beams): 
1 = (0, 0), 2 = (1, 0) and 3 = (1, 1). The totally sym- 
metric orbits IQ) are simply given by 

[ Q k ) = ~  Iqi) (34) 
i=l 

for both k = 2 and 3 orbits. 
The Hamiltonian reduces to a 3 x 3 matrix with the 

matrix elements 

(xl ~ l x ) :  0 

1 iX[ ~lq,> -- ~ Vo,, = ,/-6 V,o (x I~IQ2)- -~  ,=, ,=, 

1 6 1 ~-% 
(Q21~ ' IQg=~ ' .  (q,l~lqJ)=q~+~ Z.., Vq,q, 

(i,j) ( i , j , i # j )  

= q2+2V~o+2V~+ V2o, 

and similarly 

(XI ~"[Q3) = x/~ vii 

(Q2I ~IQ3) = 2 V~o + 2 V2o + 2 v2, 

(Q3l~lQ3)= q~ + 2 v~ + 2 V3o + v22, 
where q is the length of one representative of the 
orbit and Vq,qj are the Fourier components of the 
potential between the different q vectors of the orbit. 
Here, an initial 13 x 13 matrix has been reduced to a 
trivial 3 x 3 matrix. 

As a second example, consider a Yx = p4g projected 
crystal with the 13 beams of the four following orbits: 
1 = C0, 0), 2 = (1, 1) 3 = (2, 0) and 4 = (2, 1) (the orbit 
(1,0) is dynamically absent). The restricted little 
group of the second orbit (h, h) is yq.= 
cm (a + b, b -  a); the coset decomposition of p4g(a, b) 
onto cm(a+b,  b - a )  is given by 

p4g(a, b )=  {(110, 0)+ (mx 1½, I )+  (210, 0) 

+ (my 1½, ½)}cm(a + b, b - a ) ,  

leading to phase coetticients all +1. The orbit (2h, 0) 
has little group pg(a, b): 

p4g(a, b) = {(110, O) + (410, O) + (210, O) 
+ (43 IO, O)}pg(a, b), 

m y  

m X 

w w 
O0 

Fig. 6. Diffraction geometry of example 1. 

Table 2. Permutation table of  the beams of  example 1 
(see Fig. 6) 

p2m 1 2 m~ m r 
X q2 q3 ql 
ql q3 q2 X 
q2 X qt q3 
q3 qt X q2 

P 4 0 0 0 

leading again to + 1 phase coefficients in (32). Finally 
the (h, k> orbit has little group pl(a ,  b): 

p4g(a, b) = {(110, 0) + (410, 0)+ (210, 0) 

+(4310, 0)+ (mx 1½, ½)+ (mr 1½, ½) 

+ (mxy 1½, ½)+ (mx-y 1½, ½)}pl (a, b) 

where the phase coefficients generated by the mirrors 
are - 1. 

The four basic vectors of the totally symmetric basis 
are, finally, 

IQ0 = 10, 0); 

IQ2) = ½{ll, 1)+ll, - 1 ) + l - l , - 1 ) + 1 - 1 ,  1)}; 

IQ3> = ½{12, 0>+10,2>+1-2, 0>+ 10,-2>}, 
1 

IQ4) = ~--x/~ {12, 1)-I1, 2)+ l - l ,  2)-1-2,  1) 

+1-2, - 1 ) - l - l , - 2 ) + 1 1 ,  -2)-12,  -1)} 

from which the elements (Q,I~IQj) of the reduced 
4 x 4 scattering matrix are easily obtained. 

V.2. Special point orientations 

There are also very interesting cases where the 
centre of the Ewald sphere projects at some high 
symmetry special points of the reciprocal lattice for 
which the beam reduction technique leads to remark- 
able results. We will illustrate these cases with three 
simple examples. 

Example 1.2D symmorphic p2m crystal with X at 
(½, I) as shown in Fig. 6 and only the X orbit excited. 
The X star induces a 4D representation (Table 2) 
which can be decomposed into four irreducible 1D 
representations, 

F = Ai +A2+ BI + B2, 

with symmetry-adapted vectors 

IQI) = ½{Ix) + Iq0 + Iq2) + Iq3)} 

IQ2) = ½{Ix> + Iq0 -Iq2)-Iq3)} 

IQ3) = ½{Ix>-Iq0-Iq2) + Iq3)} 

IQ4) = ½{Ix)- Iql) + Iq2)- Iq3)}. 
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Since each of these symmetry-adapted vectors 
belongs to a unique irreducible representation, the 
4 x 4 Hamiltonian matrix is now diagonal with eigen- 
values 

)[1 = GO"[- VII4- Vol 

)[2 = Vio- G I -  Vol 

)[3 = -  Vlo--  V I I -  Vol 

A n : -  Vio4- V I i -  Vol . 

Here, simple symmetry considerations have 
directly achieved the diagonalization. 

Example 2 .2D  symmorphic p3m projected crystal 
with X at the centre of gravity of the elementary 
triangle (Fig. 7) with one excited orbit. 

The X orbit is again a base of representation of 3 m 
(see Table 3) from which one can build the three 
symmetry-adapted vectors ( j  = exp2 i,rr/3) 

1 
IQI) = ~ {Ix) 4- [q~) + [q2)} 

1 
IQ2) --- ~ {Ix) 4-Jlq,) +j2lq2)} 

1 
[Q3) --- ~ {Ix) 4-j2lql) +jlq2)}. 

The induced representation is the sum of a 1D and 
a 2D irreducible representation, 

F=AI+E.  

In the E 2D subspace spanned by {[Q2), [Q3)}, it 
is possible to perform an additional change of basis 
in order to make one of the two generating vectors 
perpendicular to IX). Indeed, let [Q~) and [Q.~) be the 
new kets of E defined by 

1 
i Q [ ) = ~  {21X)- [q , ) -  Iq2)} 

i 
IQ.~) = ~ {[q,) -lq2)}. 

]Q.~) is perpendicular to IX) and can therefore be 

m 

O l  

O0 

._ 

Table 3. Permutation table of the beams of example 2 
(see Fig. 7) 

p3m 1 3 3 2 m I m 2 m 3 
X ql q2 ql q2 X 
ql q2 X X ql q2 
q2 X ql q2 X ql 

l" 3 0 0 I ! ! 

disregarded; we finally obtain the two pertinent eigen- 
values of the problem by calculating th.e Hamiltonian 
diagonal matrix on the eigenbasis {IQ,), IQ~)}: 

)[! = 2 V.~, ) [ 2  = - -  V l 0  . 

Example 3 . 2 D  symmorphic p4m projected crystal 
with X at (½, ½) with one excited orbit (Fig. 8). 

As in the previous cases, the X orbit is a base of 
representation of p4m. From Table 4, the representa- 
tion is found to be 

F = A~ + B2+ E, 
and the symmetry-adapted kets are given by 

IQI) = I{IX) 4- Iql) + lq2) + lq3)} 

]Q2) = ½{Ix)- ]ql) 4-[q2)- Iq3)} 

[Q3) = ½{Ix)- [q , ) -  [q2) + [q3)} 

[Q4) = ½{iX) + [q , ) -  Iq2)- [q3)} 

where {]Q3), ]Q4)} span the 2D E representation. As 
in the previous example, an additional change in the 
E subspace defined by 

1 1 
[Q~) = ~ {IQ3)+ [Q4)} = ~ {Ix)-  [q2)} 

1 1 
IQ~) = ~ {IQ3)- IQ4)} = ~  { ] q 3 ) -  ]ql)} 

reduces the Hamiltonian matrix to three dimensions; 
the eigenvalues are the diagonal elements of the 
Hamiltonian on [QI), [Q2) and IQ~): 

)[i = 2Vio+ Vii 

)[2=--2Vlo + VII 

)[3 ~ -- VII • 

• w 

Fig. 7. Diffraction geometry of example 2. Fig. 8. Diffraction geometry of example 3. 
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Table 4. Permutation table of the beams of example 3 
(see Fig. 8) 

p4m 1 4 t 2 43 m x m r mxy m~y 

x ql q2 q3 q3 ql x q2 
ql q2 q3 x q2 x q3 qt 
q2 q3 X ql ql q3 q2 X 
q3 X qt q2 X q2 ql q3 

F 4 0 0 0 0 0 2 2 

VI. Concluding remarks 

The quantum-mechanical formalism of the dynamical 
theory of fast-electron elastic scattering provides an 
elegant tool for understanding the main features of 
the symmetry properties of the Hamiltonian. 

The basic idea of the present description is to 
express all symmetry operators directly in Hilbert 
space in order to use essentially intuitive geometric 
pictures for finding the symmetry-adapted basis. 

As expected, the elastic Hamiltonian being real, 
one can always find a basis on which the scattering 
matrix is real. Each time a reflection is in a Bragg 
position, the real basis has the same size as the natural 
{Iq)} basis. The 21-fold dynamical extinction is an 
illustration of the non-trivial case K 2 = - I  anti- 
unitary operation in Wigner's original work. 

Applied to unitary transformations, the present 
technique leads to the same kind of beam reduction 
as developed by Takeda (1986, 1987) and is especially 
powerful for high-symmetry orientations. The system- 
atic construction of the Hamiltonian matrix elements 
can be performed by a simple diagrammatic scheme 
where the self excitation (diagonal element) is 
replaced by a summation (with appropriate signs for 
non-symmorphic space groups) over all the internal 
coupling potentials of the beams of the orbit, and the 

off-diagonal elements between two different orbits 
are obtained by a summation of the coupling poten- 
tials between one chosen beam of the first orbit and 
all the beams of the second orbit. 
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Imaging Tunnel Atoms in Intergrowth Tungsten Bronzes 
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Abstract 

Crystals of caesium and rubidium intergrowth tung- 
sten bronze (ITB) have been studied by high-reso- 
lution electron microscopy. The structure of these 
consists of slabs of WO3 type, intergrown with slabs 
of hexagonal tungsten bronze (HTB) type containing 
hexagonal tunnels in which the alkali atoms are 
accommodated. In the images of thicker parts the 

0108-7673/88/060798-08503.00 

hexagonal tunnels are clearly revealed. In the thin 
parts the HTB structure mostly appears as a 
hexagonal pattern of dots of equal intensity and the 
tunnels are not recognizable. This applies particularly 
to Cs ITB but also in many instances to Rb ITB. Image 
simulations, assuming known or estimated degrees of 
filling of the tunnels with alkali, show a clear 
difference in contrast at the tungsten and alkali posi- 
tions, especially at certain focus settings. The dis- 
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