Read .ems images using Mathematica

P. Stadelmann
EPFL - CIME
CH - 1015 Lausanne
Pierre.Stadelmann@epfl.ch

Setting data path

Notebook is assumed to be in the images folder

SetDirectory[NotebookDirectory[]]
/Users/pierrestadelmann/Desktop/Zut

Read real images

Image is scaled from [min, max] are mapped on [0, 1].

readRealImage[name_String] := Module[{col, imager, is, row, maxr, minr, xr},
 is = OpenRead[name, BinaryFormat -> True];
 row = BinaryRead[is, "Integer32", ByteOrdering -> 1];
 col = BinaryRead[is, "Integer32", ByteOrdering -> 1];
 xr = BinaryRead[is, Table["Real32", {col * row}], ByteOrdering -> 1];
 xr = xr // Partition[#, row] &;
 Close[is];
 maxr = Max[xr];
 minr = Min[xr];
 imager = Image[Raster[(xr - minr) / (maxr - minr)]];
 imager]

Read complex or Fourier images

Image real and imaginary part from [min, max] are mapped on [0, 1].
readComplexImage[name_String] := Module[{col, comp, imagei, imager, is, row, maxr, minr, maxi, mini, xr, xi},
 is = OpenRead[name, BinaryFormat -> True];
 row = BinaryRead[is, "Integer32", ByteOrdering -> 1];
 col = BinaryRead[is, "Integer32", ByteOrdering -> 1];
 xr = BinaryRead[is, Table["Real32", {col * row}], ByteOrdering -> 1];
 xr = xr // Partition[#, row] &;
 comp = BinaryRead[is, "Integer32", ByteOrdering -> 1];
 xi = BinaryRead[is, Table["Real32", {col * row}], ByteOrdering -> 1];
 xi = xi // Partition[#, row] &;
 Close[is];
 maxr = Max[xr];
 minr = Min[xr];
 imager = Image[Raster[(xr - minr) / (maxr - minr)]];
 maxi = Max[xi];
 mini = Min[xi];
 imagei = Image[Raster[(xi - mini) / (maxi - mini)]]; :
 {imager, imagei}]

Multislice wavefunction

msWaves = FileNames["y*"]
{y0.ems, y1.ems, y2.ems, y3.ems, y4.ems, y5.ems, y6.ems, y7.ems}
y* images calculated using Multislice method. First wavefunction at z > 0
readComplexImage[msWaves[[1]]]

readComplexImage[msWaves[[3]]] & /* Range@Length@msWaves

...
Blochwave wavefunction

\[\text{bwWaves} = \text{FileNames} ["z*.ems"] \]

\{z_0000.ems, z_0001.ems, z_0002.ems, z_0003.ems, z_0004.ems, z_0005.ems, z_0006.ems, z_0007.ems, z_0008.ems, z_0009.ems, z_0010.ems, z_0011.ems, z_0012.ems, z_0013.ems, z_0014.ems, z_0015.ems, z_0016.ems, z_0017.ems, z_0018.ems, z_0019.ems, z_0020.ems, z_0021.ems, z_0022.ems, z_0023.ems, z_0024.ems, z_0025.ems, z_0026.ems, z_0027.ems, z_0028.ems, z_0029.ems, z_0030.ems, z_0031.ems, z_0032.ems, z_0033.ems, z_0034.ems, z_0035.ems, z_0036.ems, z_0037.ems, z_0038.ems, z_0039.ems, z_0040.ems, z_0041.ems, z_0042.ems, z_0043.ems, z_0044.ems, z_0045.ems, z_0046.ems, z_0047.ems, z_0048.ems, z_0049.ems, z_0050.ems, z_0051.ems, z_0052.ems, z_0053.ems, z_0054.ems, z_0055.ems, z_0056.ems, z_0057.ems, z_0058.ems, z_0059.ems, z_0060.ems, z_0061.ems, z_0062.ems, z_0063.ems, z_0064.ems, z_0065.ems, z_0066.ems, z_0067.ems, z_0068.ems, z_0069.ems, z_0070.ems, z_0071.ems, z_0072.ems, z_0073.ems, z_0074.ems, z_0075.ems, z_0076.ems, z_0077.ems, z_0078.ems, z_0079.ems, z_0080.ems, z_0081.ems, z_0082.ems, z_0083.ems, z_0084.ems, z_0085.ems, z_0086.ems, z_0087.ems, z_0088.ems, z_0089.ems, z_0090.ems, z_0091.ems, z_0092.ems, z_0093.ems, z_0094.ems, z_0095.ems, z_0096.ems, z_0097.ems, z_0098.ems, z_0099.ems\}

First BW wavefunction calculated at \(z = 0 \). Can't be read or used by the Imager.
readComplexImage[bwWaves[[1]]]

Power::infy : Infinite expression encountered.

Infinity::indet : Indeterminate expression 0. ComplexInfinity encountered.

Infinity::indet : Indeterminate expression 0. ComplexInfinity encountered.

Infinity::indet : Indeterminate expression 0. ComplexInfinity encountered.

General::stop : Further output of Infinity::indet will be suppressed during this calculation.

Image::imgarray : The specified argument

A very large output was generated. Here is a sample of it:

```
```

Show More
Conclusion

BW

You can use the imager but with BW wavefunction for $z > 0$.
Import["bwImager.png"]

I’ll have to correct the numbering of the MS wavefunction.