#### Electron diffraction & HRTEM Image Simulation

Ecole Nord Africaine et workshop en Microscopie Electronique

Pierre Stadelmann CIME-EPFL CH-1015 Lausanne Switzerland

September 6, 2013

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト → 臣 → のへ()

#### TEM diffraction/image simulation

- ► Why?
- ► How?
  - Methods.
  - Applications.

#### Quantitative simulation?

- Problems.
- Perfect microscopes.

## Why diffraction/image simulation?

 $HR(S)TEM \implies$  to acquire knowledge on observed material (oriented in particular [uvw] directions):

- Specimen structure..
- Chemical composition.
- Functional properties.

**>** ...

But HR(S)TEM images depend of several adjustable microscope parameters.

For example object defocus affects strongly HRTEM images.

#### Structure: *Si*<sub>3</sub>*N*<sub>4</sub> P 63: [001]



#### Images: Si<sub>3</sub>N<sub>4</sub> P 63: [001], 10 nm thick, -9 nm defocus





#### Imaging parameters: Titan 80-300 (300 kV), $C_s$ -0.033 mm

・ロト・日本・モート ヨー うらく

#### *Si*<sub>3</sub>*N*<sub>4</sub> P 63: [001], 10 nm thick, -3 nm defocus





#### Imaging parameters: Titan 80-300 (300 kV), $C_s$ -0.033 mm

# How to do diffraction/image simulation?

Formation of Electron Microscopy diffraction/images involves complex physical processes.

#### Approximations and models of these physical processes

are required in order to perform computer simulations. Models are based on electron scattering, diffraction, optics, ...

Needed: crystallography, optics, quantum mechanics, ... and computer programming.

#### TEM (very) simplified model



Modeling steps: Incident wave (PW), crystal (OP), electron-matter interaction, Fraunhofer approximation, image formation (Abbe theory), ...

#### Image formation modeling (HRTEM)



#### $|\chi > \implies$ incident wave function



Prior to perform any calculation the following items (from the electron source to the detector) must characterized and modeled:

- ► The electron beam properties.
- ► The specimen properties<sup>1</sup>.
- How is the incident electrons beam scattered by the specimen?
- ► How does the microscope transfer the scattered electron beam?
- How do we measure the properties of the scattered electron beam (diffraction, image, hologram)?
- What are the properties of the detection system?

<sup>1</sup>file://localhost/Applications/jemsMacOSX/html/Rb2WO9/Rb2WO9.html

- Object.
- Scattering & diffraction.
- Image formation:
  - ► HRTEM.
  - ► HRSTEM.
- Image acquisition.

## Modeling the object

#### Evolution operator U (z, 0) defines the object properties

- 1. Amorphous material or crystalline material.
- 2. Thin or thick.
- 3. Orientation (high or low symmetry [uvw]).

You might have to transform the unit cell in order to perform dynamical calculations<sup>2</sup>.



Any model is considered a periodic unit cell independent of its complexity.

<sup>&</sup>lt;sup>2</sup>See International Tables for Crystallography (1992) Vol. 1, Chapter 5.



Figure: Carbon. Red: real part, green: imaginary part, blue: thermal diffuse scattering.

Figure: Gold. Red: real part, green: imaginary part, blue: thermal diffuse scattering.

The TDS (Thermal Diffuse Scattering) at large s (=sin( $\theta$ )) scales as  $\approx Z^{1.7}$ . It explains HAADF (High Angle Annular Dark Field) atomic column contrast.

#### Atomic form factors

Atomic form factors have been tabulated by many authors:

- 1. Doyle-Turner and Smith-Burge.
- 2. E.J. Kirkland.
- 3. Peng-Ren-Dudarev-Whelan.

4. ...

Take care ASA of heavy atoms aren't always tabulated properly.



A extremely useful ASA tabulation including phonon and core loss absorption is due to Weickenmeier-Kohl<sup>3</sup>.

<sup>3</sup>A. Weickenmeier, H. Kohl, Acta Cryst. A 47 (1991) 590.

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland Electron diffraction & HRTEM Image Simulation

Crystal structure are defined by:

- 1. a, b, c,  $\alpha$ ,  $\beta$ ,  $\gamma$  lattice parameters.
- 2. Space-group or symmetry operators.
- 3. Atoms positions (Symbol, x, y, z with 0  $\leqq$  (x, y, z)  $\lneq$  1)

 $>10^5$  crystal structures provided by data bases (ICSD, Min. Soc. Ame., Cryst. Open Database)

Useful severs:

www.minsocam.org www.crystallography.net www.cryst.ehu.es

#### ICSD & AMS: data bases for crystal structures





| Tridic:       Monding:       Orthorizable       Terlange       Terlange       Cardinal gauge grad       Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                    |                                             |                   |                   |           |           | <b>#</b>         |                        |                      |                          |             |                        |            |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|---------------------------------------------|-------------------|-------------------|-----------|-----------|------------------|------------------------|----------------------|--------------------------|-------------|------------------------|------------|---|
| Construction         Construction<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Triclinic Monoclinic   | Orthorhombic                       | Tetragonal                                  | Trigonal 1        | -lexagonal Cubic  |           | Triclinic | Monoclinic       | Orthorhom              | bic Tetragonal       | Trigon                   | l Hexagonal | Cubic                  |            |   |
| Officiency starts of the finite contric string)       Image: String of the finite contric string)       Image: String of the finite contric string)         Image: String of the finite contric string)       Prace 2       Prace 2       Prace 2       Prace 2       Prace 2       Image: String of the finite contric string)         Image: String of the finite contric string)       Prace 2       Prace 2       Prace 2       Prace 2       Prace 2       Prace 2       Image: String of the finite contric string)         Image: String of the finite contric string)       Prace 2       Prace 2       Prace 2       Prace 2       Image: String of the finite contric string)         Image: String of the finite contric string)       Prace 2       Pracee 2       Prace 2 <th>Conventional space-gro</th> <th>ups coment</th> <th>ional space groups</th> <th></th> <th></th> <th></th> <th>Conventi</th> <th>onal space grou</th> <th>Non-com</th> <th>ventional space-grou</th> <th>ips</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conventional space-gro | ups coment                         | ional space groups                          |                   |                   |           | Conventi  | onal space grou  | Non-com                | ventional space-grou | ips                      |             |                        |            |   |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | On hor hombic space-g  | roups (a * indicates               | centric setting)                            | O 0 01 01 0       |                   | 0.000     | Orthork   | iombic space-gro | ups (a * indica        | nes centric setting  |                          | 0.01.01.0   |                        | 0.01.01.01 | _ |
| 0       F222       122121       Pmm2       Pec21       Pec22       0       22       F222       0       22       F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · P222                 | U P2221                            | U P 21 21 2                                 | U P 21 21 2       | . 0               | 0 6222    | • 16      | 1222             |                        | P 2 2 21             |                          | P 21 21 2   |                        | P 21 21 21 |   |
| Pma2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ○ F 2 2 2              | 0 1222                             | I 21 21 21 21                               | O Pmm 2           | Pm c 21           | O Pcc2    | 0 20      | C 2 2 21         | ▼ ○ 21                 | C222                 | - 0 22                   | F 2 2 2     | ▼ ○ 23                 | I 2 2 2    | - |
| <ul> <li>Pan2</li> <li>Cm2</li> <li>Cm2</li> <li>Ama2</li> <li>Ama2</li> <li>Ama2</li> <li>Ama2</li> <li>Ama2</li> <li>Ama2</li> <li>Pan2</li> <li>Fdd2</li> <li>Imm2</li> <li>Iba2</li> </ul> <ul> <li>Pana</li> <li>Pana</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pma2                   | P c a 21                           | Pnc 2                                       | O P m n 21        | Ο Ρbα2            | O Pna 21  | Q 24      | I 21 21 21       | ▼ ○ 25                 | Pmm 2                | - 0 26                   | P m c 21    | - 0 27                 | Pcc2       | - |
| <ul> <li>A ac 2</li> <li>F m 2</li> <li>F dd 2</li> <li>I m 2</li> <li>I m 2</li> <li>F m m</li> <li>P m m</li> <li>P m m</li> <li>P m m</li> <li>P h n 0</li> <li>P c c 0</li> <li>P b c 0</li> <li>P m n 0</li> <li>P c c 0</li> <li>P b 0</li> <li>P m n 0</li> <li>P c c 0</li> <li>P b 0</li> <li>P m n 0</li> <li>P c c 0</li> <li>P b 0</li> <li>P m n 0</li> <li>P b 0</li> <li>P m n 0</li> <li>P c c 0</li> <li>P b 0</li> <li>P m n 0</li> <li>P c c 0</li> <li>P b 0</li> <li>P m n 0</li> <li>P c c 0</li> <li>P b 0</li> <li>P m 0</li> <li>P</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 🔾 Pnn2                 | 🔘 C m m 2                          | 🔘 C m c 21                                  | ○ Ccc2            | ○ A m m 2         | ○ A e m 2 | 0.28      | Pmo2             |                        | Pco 21               | 30                       | Pnc 2       |                        | Pm n 21    |   |
| 0       Ima2       0       Pmmm       Pmma       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🔵 Ama2                 | O Aca2                             | ○ F m m 2                                   | ○ F d d 2         | 🔾 I m m 2         | ◯ Iba2    | 0.00      |                  |                        | - cuti               |                          |             |                        | 1 01 11 21 |   |
| Pnna       Pmac       Pcca       Pbcm         Pnnm       Ppma       Pbca       Pnma       Cmc2       38       Amm2       39       Aem2         Pnnm       Ppma       Pbca       Pnma       Cmca       40       Ama2       41       Aea2       42       Fmn2       43       Fdd2         Orthonbis sporgrage (dirente mo-centric setting)       Pnn       Dom Pann       Pbca       Fddd       Pnn       S0       Pbca       97       Pmma       S1       Pmma       S1       Pmma       S1       Pmma       S2       Pnn       S3       Pma       S1       Pmma       S1       Pmma       S2       Pnn       S3       Pmma       S3       Cmcm       S4       Pcca       S3       Pmma       S4       Pcca       S3       Pmma       S4       Pcca       S3       Pmma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🔾 Ima2                 | O P m m m                          | Pnnn                                        | O Pccm            | 🔵 *P b a n        | Pmma      | 32        | Pba2             | 33                     | Pna 21               | <b>-</b> 0 34            | Pnn2        | ▼ ○ 35                 | C m m 2    | - |
| Pnnm       Ppmm       Pbcn       Pbca       Pnma       Cmcm         Cmce       Cmm       Ccce       Fmmm       44       Ama2       42       Fmm2       43       Fdd2       44         Ortho-thombic spoce-groups (alternate non-centric setting)       Pnnn       Db n       Pmmm       SD       Pmmm       SD       Pmmm       SD       Pmm       SD       SD </td <td>O Pnna</td> <td>O Pmna</td> <td>O Pcca</td> <td>O Pbam</td> <td>O Pccn</td> <td>O Pbcm</td> <td>36</td> <td>C m c 21</td> <td><b>~</b> <math>\bigcirc</math> 37</td> <td>Ccc2</td> <td>- 0 38</td> <td>A m m 2</td> <td>🔽 🔾 39</td> <td>Aem 2</td> <td>•</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O Pnna                 | O Pmna                             | O Pcca                                      | O Pbam            | O Pccn            | O Pbcm    | 36        | C m c 21         | <b>~</b> $\bigcirc$ 37 | Ccc2                 | - 0 38                   | A m m 2     | 🔽 🔾 39                 | Aem 2      | • |
| Cmce       Cmmm       Cccm       Cmmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O Pnnm                 |                                    | O Pbcn                                      | O Pbca            | O Pnma            | ○ Cm cm   | Q 40      | Ama 2            | ▼ ○ 41                 | Aea2                 | - 0 42                   | Fmm 2       | - 0 43                 | Fdd2       |   |
| • FFdd         • Immm         • Ibam                                     | ○ Cmce                 | C m m m                            | ⊖ Cccm                                      | C m m e           | - *Ccce           | Fmmm      | Q 44      | Imm 2            | ↓ ○ 45                 | Iba2                 | - 0 46                   | Ima2        |                        | Pmmm       | - |
| Ortherhombic space-groups (alternate non-centric setting) <ul> <li>Pnnn</li> <li>Pban</li> <li>Pnnn</li> <li>Cccc</li> <li>Fd dd</li> </ul> Ortherhombic lattice parameters               a / nn <li>0.496               0.496               0.496               0.496               0.496               0.496               0.496               0.496               0.496               0.496               0.496               0.498               0.711               0.496               0.496               0.48               0.711               0.711               0.712               0.711               0.711               0.711               0.711               0.711               0.711               0.72               0.72               0.73               0.74               0.74               0.70</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ⊖*Fddd                 | Immm                               | ○ Ibam                                      | ○ Ibca            | Imma              |           | 0.49      | *D n n n         |                        | P.c.m.               |                          | *Dhan       |                        | Dmmo       |   |
| Orthorhombic space-groups (diferente non-centric setting)       0       55       P h n n       0       56       P c a       0       55       P h n n       0       56       P c a       0       55       P h n n       0       56       P c a       0       55       P h n n       0       56       P h n n       0       66       C c c m       0       66       C c c m       0       67       C m m       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                    | 12 1.523                                    |                   |                   |           | 0.00      |                  |                        | reem                 |                          | - Dun       |                        | T an an u  |   |
| Orthorhombic lattice parameters         a / m       0.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Orthorhombic space-g   | roups (alternate non<br>) Pnnn — P | n-centric setting) <sup>-</sup><br>Phan ○ P |                   | Gade 🔾 Ed         | d d       | ○ 52      | Pnna             | ▼ ○ 53                 | Pmna                 | <ul> <li>─ 54</li> </ul> | Pcca        | ▼ ○ 55                 | Pbam       |   |
| Orthorhombic lattice parameters         a / m       0.496       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0 56</th> <th>Pccn</th> <th>- 0 57</th> <th>Pbcm</th> <th>- 0 58</th> <th>Pnnm</th> <th><b>~</b> <math>\bigcirc</math> 59</th> <th>*Pmmn</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                    |                                             |                   |                   |           | 0 56      | Pccn             | - 0 57                 | Pbcm                 | - 0 58                   | Pnnm        | <b>~</b> $\bigcirc$ 59 | *Pmmn      |   |
| a / nm 0.496 0 4 8 12 16 20<br>b / nm 0.496 0 4 8 12 16 20<br>c / nm 0.798 0 4 8 12 16 20<br>Equivalent reflections<br>+-((h,k,l):(-h-k,h,l):(h-k,h,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k,l):(-h,-k | Orthorhombic lattice   | parameters                         |                                             | 7                 |                   |           | 0 60      | Pbcn             | ▼ ○ 61                 | Pbca                 | - 0 62                   | Pnma        | - 0 63                 | Cmcm       |   |
| b / nm       0.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a / nm                 | 0.496                              |                                             | 4 8               | 3 12 16           | 20 + ++   | <br>64    | Cmce             | - 65                   | Cmmm                 | - 0 66                   | Cccm        |                        | Cmme       | - |
| c / nm       0.798       -       0       4       8       12       16       20         c / nm       0.798       -       0       4       8       12       16       20         Equivalent reflections       +-((h,k,l):(-h-k,h,l):(-h,-k,l):((h+k,-h,l):(-k,h+k,l),)       -       -       72       Ib am       73       Ib ca       74       Im ma         Equivalent reflections       +-((h,k,l):(-h-k,h,l):((h+k,-h,l):(-k,h+k,l),)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </th <th>b/nm</th> <th>0.496</th> <th></th> <th></th> <th></th> <th></th> <th>0 68</th> <th>*Ccce</th> <th>- 0 69</th> <th>Fmmm</th> <th>- 0 70</th> <th>*Fddd</th> <th><b>~</b> 0 71</th> <th>Immm</th> <th>-</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b/nm                   | 0.496                              |                                             |                   |                   |           | 0 68      | *Ccce            | - 0 69                 | Fmmm                 | - 0 70                   | *Fddd       | <b>~</b> 0 71          | Immm       | - |
| c / nm 0.798 0 4 8 12 16 20 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                    | 0                                           | 7 4 8             | 12 16             | 20        | 0 72      | Ibam             | <b>7</b>               | Ibca                 | 74                       | Imma        | -                      |            |   |
| Orthorhombic space-groups (alternate non-certric setting)       Equivalent reflections       +-{(h,k,l):(+h-k,h,l):(+h,-k,l):(+h,-k,l):(+k,+k,l),}       OK       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c / nm                 | 0.798                              |                                             | 1.1.1.1           | 12 16             | + ++      |           |                  |                        |                      |                          |             |                        |            |   |
| Equivalent reflections<br>+-{(h,k,l);(+,+,k,l);(+,+,k,l);(+,k,+,k,l),}<br>OK Cancel<br>OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | 16                                 | 0                                           | * 0               | 5 12 10           | 20        | Orthorh   | iombic space-gro | ups (alternate         | non-centric settin   | 9)<br>h a n              | - 60 P      |                        |            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Equivalent reflections |                                    |                                             |                   |                   |           |           | <u> </u>         |                        |                      | bun                      |             |                        |            |   |
| OK Cancel OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | +-{(h,k,l);(-                      | h-k,h,l);(k,-h-k,l);                        | (-h,-k,l);(h+k,-ł | n,l);(-k,h+k,l),} |           |           | 00               | 68 Ccce                | ▼ ○ 70 F             | d d d                    | -           |                        |            |   |
| OK Cancel OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                    |                                             |                   |                   |           |           |                  |                        |                      |                          |             |                        |            |   |
| OK Cancel OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                    |                                             |                   |                   |           |           |                  |                        |                      |                          |             |                        |            |   |
| OK Cancel OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                    |                                             |                   |                   |           |           |                  |                        |                      |                          |             |                        |            |   |
| OK Cancel OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                    |                                             |                   |                   |           |           |                  |                        |                      |                          |             |                        |            |   |
| OK Cancel OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                    |                                             |                   |                   |           |           |                  |                        |                      |                          |             |                        |            |   |
| OK Cancel OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                    |                                             |                   |                   |           |           |                  |                        |                      |                          |             |                        |            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | (                                  | ок                                          | C                 | ancel             |           |           |                  |                        | ОК                   |                          | Cancel      |                        |            |   |

## Scattering & diffraction

#### Scattering: electron-matter interaction



An incident electron of wave vector  $\vec{k}_0$  interacts with a solid of scalar potential  $V(\vec{r})$ . The wave vector of the scattered electron is  $\vec{k}_q = \vec{k}_0 + \vec{q}$  where  $\vec{q}$  is the momentum transferred by the solid<sup>4</sup>.

Elastic scattering 
$$\longrightarrow ||\vec{k}_q|| = ||\vec{k}_0||.$$

<sup>&</sup>lt;sup>4</sup>Magnetic and spin effects are ignored.

#### X-Ray diffraction: Bragg law

With energy conservation and momentum transfer ( $\vec{s_g} = 0$ ):

$$|\vec{k}_i + \vec{g}| = |\vec{k}_g|$$

$$k_i^2 + 2 \times k_i \times g \times \cos(\vec{k}_i, \vec{g}) + g^2 = k_g^2$$

$$2k_i \times \cos(\vec{k}_i, \vec{g}) = -g$$

$$2k_i \times \cos(90^\circ - \theta_B) = -g$$

$$\frac{2}{\lambda} \times \sin(\theta_B) = g = \frac{1}{d_g}$$

 $\implies$  Bragg law:

 $2 \times d_{hkl} \times \sin(\theta_B) = \lambda$ 

#### Diffraction geometry



Center of the Ewald sphere (C) and Center of the Laue Circle (CLC), projection of C onto the zero order Laue zone. All reflections on the circle of radius χ are at exact Bragg condition.
 Notice that the Bragg angles are pretty small (of the order a few °) and that consequently the small angle approximation is quite good.

The structure factor gives the scattering *strength* of (h,k,I) planes.

$$F_{hkl} = \sum_{i=atomes} f_i(s_{hkl}) e^{(2\pi i (hx_i + ky_i + lz_i))}$$

where:

1.  $f_i(s_{hkl})$  is the atomic scattering amplitude. 2.  $(x_i, y_i, z_i)$  are the fractional coordinates of atom i ( $0 \le x_i < 1$ ). 3.  $s_{hkl} = \frac{sin(\theta_B)}{\lambda} = \frac{1}{2d_{hkl}}$ .

#### Crystal symmetries: extinction rules + kinematical diffraction

In general all reflections allowed by the Bravais lattice are visible:

**Simple cubic**: (hkl) no condition. 1 atom at (0, 0, 0).

$$\implies$$
  $F_{hkl} = f_i(s_{hkl})$ 

**Body centered cubic**: (hkl) : h + k + l = 2n2 atoms at (0,0,0) and  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ .

$$\implies$$
  $F_{hkl} = f_i(s_{hkl}) \left[ 1 + e^{\pi i (h+k+l)} \right]$ 

Face centered cubic: (hkl) all even or odd. 4 atoms at (0, 0, 0),  $(0, \frac{1}{2}, \frac{1}{2})$ ,  $(\frac{1}{2}, 0, \frac{1}{2})$ ,  $(\frac{1}{2}, \frac{1}{2}, 0)$ 

$$\implies F_{hkl} = f_i(s_{hkl}) \left[ 1 + e^{\pi i (h+k)} + e^{\pi i (h+l)} + e^{\pi i (k+l)} \right]$$



▲日本本部本本語を本語を、目、今年や

### $< q | U(z, 0) | \chi > \implies$ Fourier transform of object wavefunction

Dynamical scattering (many approaches under small angle approximation and elastic scattering).

#### Gratias & Portier: small angle & elastic scattering approximations



Figure: From Gratias and Portier <sup>5</sup>

#### <sup>5</sup>D. Gratias and R. Portier, Acta Cryst. **A39** (1983) 576.

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland Electron diffraction & HRTEM Image Simulation

All approximations are numerically equivalent, but perform best in particular cases.

We will consider only 2 approximations:

- ► The multislice approximation<sup>6</sup>.
- ► The Bloch-wave method<sup>7</sup>.

The multislice method performs best when simulating crystalline or amorphous solids of large unit cell or containing defects while the Bloch-wave method is adapted to the calculation of crystalline solids of small unit cell and in any [uvw] orientation. The Bloch-wave method has also several advantages (speed, ease of use) for simulating CBED, LACBED or PED patterns and for polarity and chirality determination.

<sup>&</sup>lt;sup>6</sup>J. Cowley and A.F. Moodie, Proc. Phys. Soc. B70 (1957) 486, 497 and 505.

<sup>&</sup>lt;sup>7</sup>H. A. Bethe, Ann. Phys. 87 (1928), 55.



The solid is sliced into thin sub-slices. The incident wave-function is transferred by the first slice (diffraction) and propagated to the next one. The propagation is done within the Fresnel approximation, the distance between the slices being 20 - 50 times the wavelength<sup>8</sup>.

<sup>8</sup>file://localhost/Applications/jemsMacOSX/html/PtOct/a.html

Can simulate:

- Perfects crystals.
- Defects under the periodic continuation assumption.

2 steps:

- Diffractor: transfer by a slice  $\Rightarrow$  multiplication by phase object function ( $POF(\vec{\rho})$ ).
- ▶ Propagator: propagation between slices ⇒ convolution by the Fresnel propagator (is nowadays performed by a FFT followed by a multiplication and an inverse FFT (*FT*<sup>-1</sup>, multiplication, FFT)).

<sup>&</sup>lt;sup>9</sup>K. Ishizuka, Acta Cryst. A33 (1977) 740-749.

#### Multislice: periodic continuation<sup>10</sup>



Figure: Model (one unit cell).

Figure: Model with periodic continuation  $(2 \times 2 \text{ unit cells})$ .

<sup>10</sup>A.J. Skarnulis, Thesis, Arizona State University 1975.

#### Example multislice: Pt catalyst



A: catalyst model (9500 atoms)<sup>11</sup>. B: HREM image (Jeol 400kV).

<sup>&</sup>lt;sup>11</sup>file://localhost/Applications/jemsMacOSX/html/pot3D/pot3D.html
#### Bloch wave method: z-independent potential

When the scattering potential is periodic, the eigenstates  $|j\rangle$  of the propagating electrons are Bloch waves. The hamiltonian of the system is projected on the eigenstates  $|j\rangle$  with eigenvalues  $\gamma_i$  ("anpassung" parameter).

$$\widehat{H} = \sum_j \gamma_j |j> < j|$$

The evolution operator is then given by (since  $V = V(\vec{\rho})$ ):

$$\widehat{U}(z,0) = e^{-i\widehat{H}z} = \sum_{j} e^{-i\gamma_{j}z} |j\rangle \langle j|$$

The wave-function at z developed on plane waves basis |q>:

$$\begin{split} \Psi(z) &= \sum_{q} \phi_{q}(z) |q> \\ \phi_{q}(z) &= < q |\widehat{U}(z,0)| 0> = \sum_{j} e^{-i\gamma_{j}z} < q |j> < j |0> \\ c_{0}^{*j} &= < j |0> \text{ and } c_{q}^{j} = < q |j> \end{split}$$

where in usual notation  $c_0^{*j}$  and  $c_q^j$  are the Bloch-wave excitations (component of the initial state |0 > on |j >) and coefficients (component of reflection |q > on |j >) respectively.

Simulation of:

- SAED (kinematical and dynamical).
- CBED (polarity).
- LACBED (specimen thickness, symmetry).
- ► PED (Precession Electron Diffraction).

HRTEM.

Works best for small lattice parameters crystals.

#### CBED: ZnTe [110]





Figure: Bloch-wave 5 (Te-Zn).

Figure: Bloch-wave 7 (Te-Zn).

Figure: Bloch-wave 8 (Te-Zn).

Figure: CBED (ZnTe polarity).

#### SAED: Diffraction pattern & specimen thickness



In BFP diffraction pattern depends specimen thickness.

# Goodness of dynamical diffraction theories?

#### LACBED: Si [001]



Figure: LACBED Si [001]: simulation.

Figure: LACBED Si [001]: experimental (Web site EM centre - Monash university, J. Etheridge).

Note that the experimental LACBED pattern is blurred (inelastic scattering and/or MTF of CCD camera?).

 $\frac{\text{Electron crystallography} \implies \text{precession electron diffraction (Spinning Star)}.$  Questions:

1. Are dynamical effects important?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
  - ► kinematical?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
  - kinematical?
  - 2-beams dynamical?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
  - kinematical?
  - 2-beams dynamical?
  - n-beams dynamical?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
  - kinematical?
  - 2-beams dynamical?
  - n-beams dynamical?
- 3. Best precession angle?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
  - kinematical?
  - 2-beams dynamical?
  - n-beams dynamical?
- 3. Best precession angle?
- 4. Maximum crystal thickness?



Figure: Structure projection CdCu<sub>2</sub>

Figure: Dynamical SAED pattern (5 nm)

#### $CdCu_2[001]$ : precession

Figure: CdCu<sub>2</sub> kinematical SAED pattern.



CdCu2 (121 reflections), thickness:10.0 [nm] AV/kV:100.00, CL/mm:3000, ZA:[0, 0, 1]=[0, 0, 0, 0, 1], FN:[0, 0, 1]=[0, 0, 0, 1]

Figure: CdCu<sub>2</sub> dynamical SAED pattern (5 nm)

#### $CdCu_2[001] - ZAP$

Figure: Kinematical.



CdCu2 (121 reflections), thickness:10.0 [nm] AV/kV:100.00, CL/mm:3000, ZA:[0, 0, 1]=[0, 0, 0, 0, 1], FN:[0, 0, 1]=[0, 0, 0, 1]

Figure: Dynamical (121 - beams).

#### $CdCu_2[001]$ – precession 3<sup>o</sup>

Figure: Kinematical.

#### CdCu2::Precession::[u,v,w]:[0, 0, 1]::Angle / deg. :3.00

Thickness / nm : 21.0

Figure: Dynamical (121 - beams).

At first sight kinematical approximation looks sufficient (detailed values are available).

## Image formation

#### Paraxial optics: perfect thin lens



Principal rays of paraxial optics. Reflection (plane wave) making an angle  $\alpha$ , where  $\alpha = 2\theta_B$ , corresponds to spatial frequency q.



In presence of spherical aberration, the optical path length (OPL') form  $A_o$  to  $A'_i$  is smaller than OPL from  $A_o$  to  $A_i$ . The wavefront at  $A'_i$  is out-of-phase by<sup>12</sup>:

$$e^{-2\pi i \frac{C_s \lambda^3 (\vec{q} \cdot \vec{q})^2}{4}}$$

<sup>&</sup>lt;sup>12</sup>With our plane wave choice.

#### **Optical Path Length: underfocus**



Underfocus weakens the objective lens, i.e. increases f. As a consequence the OPL from  $A_o$  to  $A'_i$  is larger:

$$e^{2\pi i \frac{\Delta f \lambda(\vec{q} \cdot \vec{q})}{2}}$$

#### Optical Path Length: eccentricity



On the contrary keeping f constant and moving the object by  $\Delta a$  decreases the OPL.

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland Electron diffraction & HRTEM Image Simulation

### Transfer by objective lens: < q' | T(q', q) | q >

Image forming system has 2 properties (Abbe theory):

- ► Linear.
- Space invariant.

Coherence of illumination:

- Source size (spatial coherence).
- Energy spread (temporal coherence).

HRTEM: T (q', q) : transmission cross-coefficients  $\implies$  approximation by envelope functions.

#### Microscope modeling: Abbe image formation theory

Objective lens is modeled as a thin lens that brings Fraunhofer diffraction pattern at finite distance (i.e. in its Back Focal Plane).



#### Transfer function $T(\vec{q})$

$$T(\vec{q}) = e^{\chi(\vec{q})} = \cos(\chi(\vec{q})) + i \underbrace{\sin(\chi(\vec{q}))}_{\text{Contrast transfer function}}$$

$$\chi(\vec{q}) = \pi \left[ W_{20} \lambda \vec{q}.\vec{q} + W_{40} \frac{\lambda^3 (\vec{q}.\vec{q})^2}{2} + \dots \right]$$

Where:

- $W_{20}$  : defocus (z)
- $W_{40}$ : spherical aberration  $(C_s)$

 $\{z, \pi (u^2 + v^2) \lambda\}$  (defocus) { $W(1,1), 2\pi(u\cos(\phi(1,1)) + v\sin(\phi(1,1)))$ } { $W(2,2), \pi\lambda((u-v)(u+v)\cos(2\phi(2,2))+2uv\sin(2\phi(2,2)))$ }  $W(3,1), \frac{2}{3}\pi (u^2 + v^2) \lambda^2 (u \cos(\phi(3,1)) + v \sin(\phi(3,1)))$  $W(3,3), \frac{2}{3}\pi\lambda^{2}(u(u^{2}-3v^{2})\cos(3\phi(3,3))-v(v^{2}-3u^{2})\sin(3\phi(3,3)))\}$  $W(4,0), \frac{1}{2}\pi (u^2 + v^2)^2 \lambda^3$  (spherical aberration)  $W(4,2), \frac{1}{2}\pi (u^2 + v^2) \lambda^3 ((u - v)(u + v) \cos(2\phi(4,2)) + 2uv \sin(2\phi(4,2))) \}$  $W(4,4), \frac{1}{2}\pi\lambda^{3}\left(\left(u^{4}-6v^{2}u^{2}+v^{4}\right)\cos(4\phi(4,4))+4u(u-v)v(u+v)\sin(4\phi(4,4))\right)\right\}$  $W(5,1), \frac{2}{5}\pi (u^2 + v^2)^2 \lambda^4 (u \cos(\phi(5,1)) + v \sin(\phi(5,1))) \Big\}$  $W(5,3), \frac{2}{5}\pi (u^2 + v^2) \lambda^4 (u (u^2 - 3v^2) \cos(3\phi(5,3)) - v (v^2 - 3u^2) \sin(3\phi(5,3)))$  $W(5,5), \frac{2}{5}\pi\lambda^{4} \left( u \left( u^{4} - 10v^{2}u^{2} + 5v^{4} \right) \cos(5\phi(5,5)) + v \left( 5u^{4} - 10v^{2}u^{2} + v^{4} \right) \sin(5\phi(5,5)) \right) \right\}$  $W(6,0), \frac{1}{3}\pi (u^2 + v^2)^3 \lambda^5$  $W(6,2), \frac{1}{3}\pi (u^2 + v^2)^2 \lambda^5 ((u - v)(u + v) \cos(2\phi(6,2)) + 2uv \sin(2\phi(6,2)))$  $W(6,4), \frac{1}{2}\pi\lambda^5\left(\left(u^6 - 5v^2u^4 - 5v^4u^2 + v^6\right)\cos(4\phi(6,4)) + 4uv\left(u^4 - v^4\right)\sin(4\phi(6,4))\right)\right\}$  $\{W(6,6), \frac{1}{2}\pi\lambda^5((u^6-15v^2u^4+15v^4u^2-v^6)\cos(6\phi(6,6))+2uv(3u^4-10v^2u^2+3v^4)\sin(6\phi(6,6)))\}$ 

#### Contrast transfer function: $sin(\chi(\vec{q}))$



The transfer function of the objective lens in the absence of lens current and accelerating voltage fluctuations (Scherzer defocus). The (111) and (022) reflections of Si are phase shifted by  $-\frac{\pi}{2} \rightarrow$  black atomic columns.

#### HRTEM image intensity: WPOA

In the Weak Phase Object Approximation under optimum transfer conditions the image intensity  $I(\vec{x})$  is:

▶ positive *C<sub>s</sub>* (black atomic columns)

$$I(\vec{x}) \sim 1 - 2\sigma V_p(\vec{x})$$

• negative  $C_s$  (white atomic columns)

 $I(\vec{x}) \sim \sigma V_p(\vec{x})$ 

Where:

 $V_p(\vec{x})$ : projected potential

 $\sigma: {\rm electron}$  matter interaction constant

#### HRTEM image depends on specimen thickness and object defocus

**Thickness series** 



#### Si [001] images map: contrast dependence of defocus & thickness



HREM map does not include the Modulation Transfer Function (MTF) of the detector.

## Problems

#### Problems...

#### Object

- $\rightarrow$  Atomic scattering amplitude below 50 kV?
- $\blacktriangleright$   $\rightarrow$  Potential by DFT calculation?
- ▶ ...

...

- HRTEM  $\rightarrow$  Phase of diffracted beams evolves with specimen thickness.
- HRTEM  $\rightarrow$  MTF of image acquisition system (Stobbs factor?).
- HRTEM / HRSTEM  $\rightarrow$  Electron channeling depends on atomic column content.
- HRTEM / HRSTEM  $\rightarrow$  Aberrations of optical system.
- ► HRTEM → Inelastic scattering (J.M. Cowley, E.J. Kirkland, D. van Dyck, A. Rosenaurer, K. Ishizuka, Z.L. Wang, H. Rose, H. Mueller, L. Allen, …).
- HRTEM / HRSTEM  $\rightarrow$  Drift, vibration, Johnson-Nyquist noise<sup>13</sup>, ...

<sup>&</sup>lt;sup>13</sup>S. Uhlemann, H. Mueller, P. Hartel, J. Zach & M. Haider, Phys. Rev. Lett. **111** (2013) 046101.

#### HRTEM problem: amplitude and phase of diffracted beams



#### Note that phase of diffracted beam is $\frac{\pi}{2}$ out-of-phase with respect to transmitted beam.

#### HRTEM problem: CCD MTF (Gatan MSC 1K x 1K, 24 $\mu$ m)

To make quantitative comparison with experimental HRTEM images the MTF of the detector must be introduced in the simulation.

MTF

1.00



Figure: At high magnification Si (220) planes imaged with high contrast.

Figure: At low magnification Si (220) planes imaged with low contrast.

For quantitative comparison always use highest possible magnification (or include CCD MTF in simulations)!



Camera MTF & PSF

1.0



Figure: A: Si [001] simulation.

Figure: B: Si [001], simulation + CCD MTF.



Figure: A: Si [001] simulation.

Figure: B: Si [001], simulation + CCD MTF.

#### HRTEM / HRSTEM problem: electron channeling (ZnTe [110])



Figure: ZnTe [110] wave function intensity.

Channeling explains several features of HRTEM and STEM images (i.e. appearance / disappearance of contrast of impurities).
### Does $C_s$ and $C_c$ correction solves all imaging problems?

Example: Cd*Cu*<sub>2</sub>, visibility of the 3 Cu atomic columns.





#### HRTEM image simulation conditions

| Acc. [kV] | $C_s[mm]$ | $C_5[mm]$ | $C_c[mm]$ | $\Delta E[eV]$ | Z [nm] | $\Delta z[nm]$ |
|-----------|-----------|-----------|-----------|----------------|--------|----------------|
| 300       | -0.008    | 30        | 0.5       | 0.6            | -4.9   | 1              |
| 300       | -0.008    | 30        | 0.1       | 0.2            | -2.0   | 1              |

Dynamical scattering effects are not affected by  $C_s$  and/or  $C_c$  corrected TEM!

# *CdCu*<sub>2</sub>[001]: imaging parameters set 1



Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.

## *CdCu*<sub>2</sub>[001]: imaging parameters set 2



Improving  $C_c$  and  $\Delta E$  does not affect the visibility of 3 the Cu atomic columns. It depends on specimen thickness (and defocus indeed). Visibility of the 3 Cu atomic columns is always affected by dynamical scattering. Only extremely thin specimen ( $\leq 10$  nm) will allow faithful imaging of crystal projected potential.

High Angle Annular Dark Field (HAADF): inelastically scattered electrons.

When simulation is necessary how to simulate images?

Numerous approximations:

- Simple projected + convolution with probe intensity: no channeling effect (Weak Object Approximation).
- Multislice calculation: channeling + inelastic scattering (absorption potential) + convolution with probe intensity.
- Frozen lattice (phonon) approximation: atoms of super-cell displaced out of equilibrium position, probe scanned on imaged area, intensity collected by annular detector.
- Pennycook, Nellist, Ishizuka, Shiojiri, Allen, Wang, Rosenauer, van Dyck, ...

Except the first 2 methods, simulation time expensive (luxury?). Approximations (necessity) may suffice...

# HAADF: graphene



Figure: Proj. pot. approx.

Figure: Channeling calculation.



Figure: Frozen lattice 5 conf. Figure: Frozen lattice 10 conf.

# HRSTEM - HRTEM comparison: graphene with add atoms



Figure: Graphene with Si in 6 C ring, Si substitutional and 2 C column.

### Graphene HAADF (100 kV, 70 -150 mrad)



Figure: Frozen lattice ( $\sim$ 400 s).

Figure: Channeling ( $\sim 2$  s).

One Si shows more contrast than 2 C atoms (i  $\sim Z^2$ ) : 14<sup>2</sup> compared to  $\sim 2 \times 6^2$ .

### Graphene HRTEM (100 kV, $C_s - 0.033 mm$ )



Figure: Weak phase object app.,  $C_c = 0.5mm$ 

Figure: Multislice,  $C_s = -0.033mm$ ,  $C_c = 0$ , no thermal magnetic noise.

HRTEM does not display the strong contrast difference between one Si and two C as given by HAADF.

No doubt that image simulation necessary for quantitative work<sup>14</sup>.

- Exit wave function recovery using focal series reconstruction.
- Transport of intensity equation.

# But... can also be used for teaching or planing HRTEM/HRSTEM observations.

<sup>14</sup>K. W. Urban, Science **321** (2008) 506.

### HRTEM / HRSTEM problem: aberrations of optical system

Reaching 0.05 nm resolution sets very strong conditions on aberrations correction.



Figure: Aberration figure of  $C_{34}(0.5\mu m)$ , phase jump at  $\frac{\pi}{4}$ .



Figure: Optical Transfer Function.

Note that Optical Transfer Function (HRSTEM) transfers higher spatial frequencies than Ccoherent Transfer Function (HRTEM).

# → Let's look at perfect microscopes!

・ロト・日本・モート・ヨー うくの

### Dynamical theory of elastic scattering of high energy electron

We aim to understand in details multiple elastic scattering of electrons by crystals.

- ► High energy electron (eE).
- Periodic interaction potential  $V(\vec{r})$ .
- Time independent flux of incident electrons.

The fundamental equation of electron elastic scattering by a potential  $V_v$  [Volt](positive inside a crystal) in the approximation of a stationary flux of electrons of a given energy e E is the Schrödinger equation ([?]):

$$\Delta \Phi(\vec{r}) + \frac{2me}{\hbar^2} [E + V_v(\vec{r})] \Phi(\vec{r}) = 0$$

With a change of notation its is written as:

$$\left[\triangle + 4\pi^2 K_i^2\right] \Phi(\vec{r}) = -4\pi^2 V_v(\vec{r}) \Phi(\vec{r})$$

Where the wavevector  $|\vec{K}_i|$  of the incident electrons is given by:

$$|K_i| = \frac{\sqrt{2meE}}{h}$$

and

$$m = \gamma m_0$$

### Schrödinger equation

The Laplacian  $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$  is written as:  $\triangle_{\rho} + \frac{\partial^2}{\partial z^2}$ . As a result,  $[\triangle + ...]e^{2\pi i k_z z} \Psi(\rho; z)$  is given by:  $[\triangle_{\rho} + \frac{\partial^2}{\partial z^2} + ...]e^{2\pi i k_z z} \Psi(\rho; z)$ . Performing the z-differentiation:

$$\frac{\partial^2}{\partial z^2} e^{2\pi i k_z z} \Psi(\rho; z) = e^{2\pi i k_z z} \left[-4\pi^2 k_z^2 + 4\pi i k_z \frac{\partial}{\partial z} + \frac{\partial^2}{\partial z^2}\right] \Psi(\rho; z)$$

Inserting the last expression and dropping the term  $e^{2\pi i k_z z}$ :

$$\begin{split} [\triangle_{\rho} + 4\pi^{2}(K_{i}^{2} - k_{z}^{2} + V(\rho; z)) + 4\pi\imath k_{z}\frac{\partial}{\partial z} + \frac{\partial^{2}}{\partial z^{2}}]\Psi(\rho; z) &= 0 \\ \\ \text{Since } K_{i}^{2} &= k_{z}^{2} + \chi^{2}: \\ [\triangle_{\rho} + 4\pi^{2}\chi^{2} + 4\pi^{2}V(\rho; z) + 4\pi\imath k_{z}\frac{\partial}{\partial z} + \frac{\partial^{2}}{\partial z^{2}}]\Psi(\rho; z) &= 0 \end{split}$$

Rearranging the last equation:

$$\imath \frac{\partial \Psi(\rho;z)}{\partial z} = -\frac{1}{4\pi k_z} [\triangle_{\rho} + 4\pi^2 \chi^2 + 4\pi^2 V(\rho;z) + \frac{\partial^2}{\partial z^2}] \Psi(\rho;z)$$

$$i\frac{\partial\Psi(\rho;z)}{\partial z} = -\frac{1}{4\pi k_z} [\triangle_{\rho} + 4\pi^2\chi^2 + 4\pi^2 V(\rho;z) + \frac{\partial^2}{\partial z^2}]\Psi(\rho;z)$$

The term  $\left|\frac{\partial^2 \Psi(\rho;z)}{\partial z^2}\right|$  being much smaller than  $\left|k_z \frac{\partial \Psi(\rho;z)}{\partial z}\right|$  we drop it (this is equivalent to neglect backscattering).

Fundamental equation of elastic scattering of high energy mono-kinetic electrons with a potential within the approximation of small angle scattering:

$$\iota \frac{\partial}{\partial z} \Psi(\rho; z) = -\frac{1}{4\pi k_z} [\triangle_\rho + 4\pi^2 \chi^2 + 4\pi^2 V(\rho; z)] \Psi(\rho; z)$$

Time dependent Schrödinger equation  $\implies$  solution by many methods of quantum mechanics!

#### Remarks

- ► The approximations of the fundamental equation are equivalent to assume that the scattering potential is small compared to the accelerating potential and that k<sub>z</sub> varies only slightly with z. It is in fact a quite good approximation, since the mean crystal potential is of the order of 10 20 V.
- Electron backscattering is neglected, the electron are moving forwards.
- ► The fundamental equation is actually equivalent to a 2-dimensional Schrödinger equation (ρ = {x, y}) where z plays the role of time. The system evolution is causal, from the past to the future.

Fundamental equation in Hamiltonian form:

$$\imath \frac{\partial}{\partial z} \Psi = H \ \psi$$

where:

$$H = -\frac{1}{4\pi k_z} [\triangle_{\rho} + 4\pi^2 \chi^2 + 4\pi^2 V(\rho; z)] = H_o + \frac{4\pi^2 V(\rho; z)}{4\pi k_z}$$

A fundamental postulate of quantum mechanics ([?, ?]) says that the evolution operator obeys the equation:

$$u \frac{\partial}{\partial z} U(z,0) = H(\rho;z) \ U(z,0)$$

- \* ロ > \* 御 > \* 注 > \* 注 > - 注 - のへ(

### Causal evolution operator

U(z, 0): unitary operator (the norm of  $|\Psi\rangle$  is conserved), in general not directly integrable  $\implies$  approximations.

U(z, 0) can be directly integrated only when  $H(\rho; z)$  and  $\frac{\partial}{\partial z}H(\rho; z)$  commute. In that case the general solution is [?]:

$$U(z,0) = e^{-i \int_0^z H(\tau) d\tau}$$

 $H(\rho; z)$  and  $\frac{\partial}{\partial z}H(\rho; z)$  commute when:

- $V(\rho; z)$  does not depend on z, i.e.  $V(\rho; z) = V(\rho)$ (perfect crystal).
- $V(\rho; z)$  can be neglected (free space propagation).
- $H(\rho; z)$  is approximated by it potential term (phase object).

Three approximations are available in jems:

- Multislice method.
- Bloch wave method.
- Howie-Whelan column approximation.

## Future of HRTEM simulation with the $C_s$ and $C_c$ corrections?

Example: Cd*Cu*<sub>2</sub>, visibility of the 3 Cu atomic columns.





#### HRTEM image simulation conditions

| Acc. [kV] | $C_s[mm]$ | $C_5[mm]$ | $C_c[mm]$ | $\Delta E[eV]$ | Z [nm] | $\Delta z[nm]$ |
|-----------|-----------|-----------|-----------|----------------|--------|----------------|
| 300       | -0.008    | 30        | 0.5       | 0.6            | -4.9   | 1              |
| 300       | -0.008    | 30        | 0.1       | 0.2            | -2.0   | 1              |

Dynamical scattering effects are not affected by  $C_s$  and/or  $C_c$  corrected TEM!



Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.

# *CdCu*<sub>2</sub>[001]: imaging parameters set 2



Improving  $C_c$  and  $\Delta E$  does not affect the visibility of 3 the Cu atomic columns depends on specimen thickness and defocus.

Visibility of the 3 Cu atomic columns is affected dynamical scattering (1 MeV  $C_s$  and  $C_c$  TEM).

High Angle Annular Dark Field (HAADF): inelastically scattered electrons. How to simulate images?

Various approximations:

- ► Simple projected + convolution with probe intensity: no channeling effect (WPOA).
- Multislice calculation: channeling + inelastic scattering (absorption potential) + convolution with probe intensity.
- Frozen phonons approximation: atoms of super-cell displaced out of equilibrium position<sup>15</sup>, probe scanned on imaged area, intensity collected by annular detector.
- Ishizuka: ...
- Shiojiri:...
- ▶ ....

Except the first 2 methods, simulation time expensive. Approximations may suffice...

<sup>&</sup>lt;sup>15</sup>file://localhost/Applications/jemsMacOSX/html/graphene/ap.html

### HAADF: graphene



by 2 fold astigmatism.

Figure: Probe affected by 3 fold astigmatism.

Figure: Probe affected by coma.

Figure: Corrected probe (best defocus).



Figure: HAADF projected potential approximation. Figure: HAADF multislice calculation (simple). Figure: Frozen phonons 5 configurations.

Figure: Frozen phonons 10 configurations.

# Thanks you for attention!

My gratitude to:

All my collaborators!

・ロト・日本・日本・日本・日本・日本



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - のへで