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Dynamical theory of elastic electron 
diffraction at small angles

Introduction
The dynamical theory of elastic electron diffraction at small angles is very important

to understand both diffraction patterns and images. It uses several approximations,

in particular the small angle diffraction approximation. This approximation is

satisfied when the energy of the incident electrons is equal or larger than 50 kV

(depending on crystal mean atomic number). This theory is presented here following

Portier and Gratias [Portier, 1981].

Before its formal description a few remarks are required:

i) The electron microscope destroys the space isotropy as the electron are

propagating thousand times faster in the direction defined by the optical column of

the microscope (z direction) than in a plane perpendicular to it ({x,y} plane). In the

small angles approximation the 3 dimensional stationary problem is replaced by a 2

dimensional problem where time is replaced by z. This problem can be solved using

the theory of time dependant perturbation.

ii) The diffraction problem can be considered as a transition process using the

following scheme:
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-given known initial state  (direction of the incident electrons or wave vector),

what is the transition probability after interaction with a diffusion potential during

a time z (crystal thickness) to a particular final state  (i.e. a diffracted beam).

The dynamical theory of elastic diffraction calculates the amplitude and phase

diffracted in a set of directions {|f>} selected by the Bragg law. It is equivalent to

calculate the transition probabilities from an initial state |i> towards these

directions |f>.

The fundamental equation of the elastic diffusion of electrons in a potential V is

given in the stationary mono-electronic approximation (constant electron flux, no

energy dispersion) [Humphreys, 1979]:

 (1)

where the wave vector k is given by:

i| 〉

f| 〉

∆ k2+( )Φ VΦ=

k 2meE
h
_------------------=

m γmo mass of the electron corrected for relativistic effect,= =

γ 1 e2E2

2moc2
----------------+ relativistic correction (2 à 511 KeV),= =

e electron charge,=

E accelerating voltage,=

c speed of light in vacuum,=
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In this description of the dynamical theory we use .

Table 1 shows a few values of the relativistic correction, the wavelength and speed

of electron accelerated in a potential from 50 kV to 1000kV.

The electron microscope destroys the space isotropy because of the very high

kinetic energy of the electrons. The 3-D space is thus described by {r; z} where

. At very high energy Bragg angles are very small. The Bragg law

 is nothing else but a consequence of elastic diffusion. Figure 1

shows the wave vectors ko and kq the incident beam and of a diffracted beam

respectively. They are both located on the Ewald sphere, i.e. the sphere of all

possible direction of elastic diffusion. Elastic diffusion will occur when kq = ko + q.

Eo kV γ λ [pm] v/c
50 1.098 5.362 0.412

100 1.119 3.706 0.548

200 1.391 2.511 0.695

500 1.978 1.423 0.862

1000 2.957 0.873 0.941
TABLE 1. Relativistic correction, wavelength and speed of the electron

V 2me
h
_ 2
----------Vvolt ρ z;( )– diffusing potential.= =

h
_ 2

2m
-------- 1=

ρ x y,( )=

2dq θsin λ=



Dynamical theory of elastic electron diffraction at small angles

Dynamical theory of elastic diffraction at small angles 4

FIGURE 1. Geometry of elastic diffraction (Bragg condition satisfied)

Elastic diffraction satisfies  and . Combining these 2

equations one obtain: . And finally the Bragg law:

For typical dq of 10 nm-1 and wave vector of 400 nm-1 (at 200 kV), the Bragg angle is

of the order of 0.15 degree. Thus the small angles approximation is well verified in

transmission electron microscopy.

The geometry of the dynamical theory is defined in figure 2. The wave vector k of

the incident electron is close to a [u,v,w] crystal direction (zone axis): the miss

orientation is given by c, projection of k on the {x,y}plane (|c| ~ 1-10 nm-1). The z

component kz of k is very large (~400 nm-1). As a result the electron wave oscillates

with a very high frequency in the z direction. The electron wave function F(r; z) is

written as:

plan (hkl)

ko kq

q

θB θB

O q
90o- θB

C

kq ko= kq q– ko=

2 ko
π
2
--- θB– 
 cos q=

2dq θBsin λ=
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 (2)

where  is a slowly varying function of z.

Putting equation (2) in equation (1) and neglecting  because:

 and  (at 200 kV, l = 2.5 pm, kz = 400 nm-1) the

fundamental equation of the dynamical theory of elastic diffraction at small angles

is obtained:

 (3)

Φ r( ) Φ ρ z;( )= e
ikz z

ψ ρ z;( )=

ψ ρ z;( )

z2

2

∂

∂ ψ

z∂
∂ψ 1

2kz
--------

z2

2

∂

∂ ψ» ψ 1
2kz
--------

z2

2

∂

∂ ψ»

i
z∂
∂ ψ ρ z;( ) 1

2kz
-------- ∆ρ– χ

2– V ρ z;( )+[ ]ψ ρ z;( )=
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FIGURE 2. Geometry of the electron diffraction problem. The incident wave vector |k| is very large 
compared to its projection |c| on the {r,0} = (x, y) plane.

Remarks:

i) The approximation of the fundamental equation is equivalent to assume that the

diffusing potential is very small compared to the incident electron energy and that

the z component of k only varies very slightly during the diffusion process. This is

a good approximation as the mean crystal potential is of the order of 10~30 V. 

ii) Electron back scattering is neglected (as the z movement is almost constant in

the z direction).

Equation 3 is formally equivalent to a time-dependent Schroedinger equation in 2

dimensions r, where z plays the role of time. The evolution of the system is

O

z
ρ

χ

k kz

E

[uvw]
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absolutely causal, i.e. from the past to the future without any interaction towards the

past. The -z movement of the electrons does not interfere with the +z movement.

Using a hamiltonian notation equation (3) becomes:

 where 

Let us introduce Ho as:

Ho is the hamiltonian of a system where k is parallel to [u,v,w].

Thus:

 where c2 is the transverse kinetic energy of the

incident electrons (it is null when the electron beam is along [u,v,w]).

H depends of z through V(r; z). When one assumes that V does not depend on z, one

can define a causal evolution operator U(z, o) such that:

 (4)

Assuming that V = V(r) does not depend on z, is equivalent to replace the crystal

by a stack of small slices of thickness t, with constant projected potential V'(r) (in a

given slice):

 (5)

The causal evolution operator is thus:

i
z∂
∂ψ Hψ= H 1

2kz
-------- ∆ρ– χ

2– V ρ z;( )+[ ]=

Ho ∆ρ– V ρ z;( )+=

H 1
2kz
-------- Ho χ

2–[ ]=

Ψ ρ z;( ) U z o,( )ψ ρ o;( )=

V' ρ( ) 1
τ
--- V ρ z';( ) z'd

z

z τ+( )

∫=
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 (6)

The evolution operator obeys the following differential equation (postulate of

quantum mechanics) [Messiah, 1964, Shankar, 1994]:

 (7)

Hence, the small angle approximation of the dynamical theory of elastic electron

diffraction is solved when the solutions of (7) are found.

Reminder on the notation used in the following pages

In the crystal space at 2 dimensions {x,y} or r (r representation), the position

eigenvectors are given by:

 (8)

where d(r’-r) is the Dirac distribution (or function). In the dual space or reciprocal

space or momentum space (q representation or plane waves basis) the eigenvectors

of the momentum are given by:

 (9)

In the  basis the electron wave function is:

 (10)

In the  basis (plane wave representation) the wave function projected in the

direction is:

 (11)

U zn o,( ) U zn zn 1–,( )...U z o,( )=

i
z∂
∂ U z o,( ) H ρ z,( )U z o,( )=

ρ| 〉 δ ρ' ρ–( )=

q| 〉 1
2π
------ei q ρ⋅( )=

ρ| 〉{ }

ρ ψ〈 | 〉 ψ ρ'( )δ ρ' ρ–( ) ρ'd∫=

q| 〉{ }

q| 〉

q ψ〈 | 〉 ψ ρ( )e i q ρ⋅( )–
ρd∫=
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i.e.  is the complex amplitude diffracted in the  direction.

The wave function  is thus decomposed on the basis of plane

waves, i.e. a Fourier decomposition.

The initial state characterized by c is represented by a state . Hence its wave

function is written as: . 

Similarly, the final state at thickness z is  and its wave function is

.

Hermitic or self-adjoint operators can be decomposed on the basis formed by their

eigenvectors (spectral decomposition). 

For example    (spectral decomposition of H).

Or:  where  are the projection operators.

Using the spectral decomposition any function of an hermitic operator (i.e. f(H))

can be written as:

. 

(this follows from the fact that ).

qψ〈 | 〉 q| 〉

ψ ρ( ) q| 〉 q ψ〈 | 〉
q| 〉
∑=

ψo| 〉

ψ ρ o;( ) ρ ψo〈 | 〉=

ψz| 〉

ψ ρ z;( ) ρ ψz〈 | 〉=

H λi λi| 〉 λi〈 |
i
∑=

H λiPλi
i
∑= Pλi

λi| 〉 λi〈 |=

f H( ) f λi( ) λi| 〉 λi〈 |
i
∑=

P2
λi Pλi

=
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Transition probability

The electron wave function at thickness z after interaction with the crystal potential 
is given by . The intensity diffracted in the  direction is 

the transition probability  from the initial state  to the 

final state  (figure 3). It is given by:

 (12)

FIGURE 3. Transition from the initial state |o> to a final state |q>.

The intensity at a point  r of the exit face of the crystal is similarly given by:

where the closure relation for a periodic specimen has been used: .

ψz| 〉 U z o,( ) ψo| 〉= q| 〉

ωo q→ z o,( ) q o=| 〉 o| 〉=

q| 〉

ωo q→ z o,( ) q〈 |U z o,( ) o| 〉 2=

z = 0

z

[uvw]

|χ>

|q>

ωo ρ→ z o,( ) ρ〈 |U z 0,( ) o| 〉 2
ρ q〈 | 〉 q〈 |

q
∑ U z 0,( ) o| 〉

2
= =

q| 〉 q〈 |
q
∑ 1=
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The intensity observed at a point r located in the image plane (observation plane) is

modified by the transfer function  of the electron microscope. It is given

by:

where the exit wave function components ) are modified by the

microscope (terms ). The terms  are related to the inverse

Fourier transform that provides the image wave function.

In the back focal plane of the objective lens the wave function component is:

 

One sees that a coupling of the diffracted beams is introduced during the transfer

by the objective lens.

When the transfer is linear (i.e. for a weak phase object), the transfer matrix is

diagonal   . In that particularly simple case, the

image intensity is given by:

 (13)

Furthermore the symmetry properties of the diffraction patterns and of the high

resolution images are intrinsic properties of the transition probability functions

 and .

To summarize, one have to calculate the evolution operator  in order to

solve the fundamental equation.

T q' q,( )

ωo ρ→ z o,( ) ρ q'〈 | 〉
q
∑ q'〈 |T q' q,( ) q| 〉 q〈 |

q'
∑ U z o,( ) o| 〉

2
=

q〈 |U z 0,( ) o| 〉

q'〈 |T q' q,( ) q| 〉 ρ q'〈 | 〉
q'
∑

q'| 〉

q'〈 |T q' q,( ) q| 〉 q〈 |
q'
∑ U z o,( ) o| 〉

q'〈 |T q' q,( ) q| 〉 T q( )δ q' q–( )=

ωo ρ→ z o,( ) ρ q〈 | 〉
q
∑ T q( ) q〈 |U z 0,( ) o| 〉

2
=

ωo q→ z o,( ) ωo ρ→ z o,( )

U z o,( )
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, a unitary operator, is not in general directly integrable. But, when

 and  commute one has the general solution:

 (14)

 and  commute when:

• ,
• ,
• .

These approximations are considered below. They are very useful for the electron

microscopes, as they explain both the Bloch wave and the multislice approach. 

Approximations

The diffusing potential does not depend on z

When the diffusion potential does not depend on z, the evolution operator

 is reduced to . 

As H is a hermitic (self-adjoint) operator it can be represented in its eigenstates

basis  by a diagonal matrix where the  are the (real) associated eigenvalues: 

 (15)

U z o,( )

H z( )
z∂
∂ H z( )

U z o,( ) i– H τ( ) τd

o

z

∫exp=

H z( )
z∂
∂ H z( )

V ρ z,( ) does not depend on z
V ρ z;( ) can be neglected
H z( ) reduces to its potential term

U z o,( ) i H τ( ) τd

o

z

∫–exp= U z o,( ) i H τ( ) τd

o

z

∫–exp=

α| 〉{ } γα

H α| 〉 γα α| 〉=



Introduction

Dynamical theory of elastic diffraction at small angles 13

The eigenstates  are Bloch waves that characterize the propagation of the

electron wave in a periodic continuum (crystal) and the eigenvalues  give the

kinetic energy of the Bloch waves. The unitary operators  are

projectors on the eigenstates of the Hamiltonian :

 (16)

The evolution operator is a function of H and is written as:

.

When V (r) does not depend on z,  is also diagonal on . Therefore

there is no possibility of transition between Bloch states.

The incident wave function  is a plane wave (or a sum of plane waves). Using

the principle of superposition, it suffices to consider only one plane wave to

calculate the wave function  at the exit plane of the crystal:

 . 

But:

 

As a consequence the (complex) projected amplitude of  on  (Fourier

coefficient of the wave transmitted by the crystal, i.e diffracted beam) is:

α| 〉

γα

Pα α| 〉 α〈 |=

H z( )

H γα α| 〉 α〈 |
α
∑ γαPα

α
∑= =

U z o,( ) e
γ– αz

α| 〉 α〈 |
α
∑=

U z o,( ) α| 〉{ }

o| 〉

ψ ρ z,( )

ψ ρ z,( ) φq ρ z,( ) q| 〉
q
∑=

ψz| 〉 e
γ– αz

α| 〉 α ψo〈 | 〉
α
∑=

ψz| 〉 q| 〉
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 (17)

Many books and research papers use excitation and Bloch wave coefficients. They

are expressed in function of  and  as: 

,

.

Using the microscopes notation:

 (18)

And the exit wave function is:

 (19)

The eigenstates or Bloch waves are linear combinations of the plane waves:

 . 

Equation (19) gives the representation of the wave function on the plane wave

basis , i.e. its Fourier decomposition. The eigenstates define the dispersion

surfaces, surfaces of constant total energy, but different kinetic energy.

How to determine the eigenstates?

In the plane waves basis  (q representation)  is written as:

φq ρ z,( ) q ψz〈 | 〉 q〈 |U z o,( ) o| 〉 e
γ– αz

q α〈 | 〉 α o〈 | 〉
α
∑= = =

q| 〉 α| 〉

α o〈 | 〉 co
α( )* co

α*=  projection of o| 〉 on α| 〉 : excitation coeff.=

q α〈 | 〉 cq
α  projection of α| 〉 on q| 〉=

φq ρ z,( ) q〈 |U z o,( ) o| 〉 e
γ– αz

cαq co
α*

α
∑= =

ψ ρ z;( ) φq ρ z,( ) q| 〉
q
∑ co

α* e
γ– αz

cαq
q
∑ q| 〉

α
∑= =

α| 〉 cαq q| 〉
q
∑=

q| 〉{ }

q| 〉{ } H α| 〉 γα α| 〉=
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. 

Using the closure relation , the matrix elements of H (  basis)

are obtained:

 (20)

For the hamiltonian , the matrix elements of

 are diagonal and consequently equation (20) reduces to:

 (21)

Using the microscopiste excitation error and Bloch wave coefficients and the fact

that the matrix element of V(r) are:

 ,

the usual secular equation is obtained:

 (22)

It is simpler to write it in matrix form:  

q H α〈 | 〉 γα q α〈 | 〉=

q'| 〉 q'〈 |
q'
∑ 1= q| 〉{ }

q〈 |H q'| 〉 q' α〈 | 〉
q'
∑ γα q α〈 | 〉=

H 1
2kz
-------- ∆ρ– χ

2– V ρ z;( )+[ ]=

∆ρ– χ
2–

q2
χ

2–
2kz

----------------- q α〈 | 〉 q〈 | V
2kz
-------- q'| 〉 q' α〈 | 〉

q'
∑+ γα q α〈 | 〉=

Vq' q– q〈 |V q'| 〉=

q2
χ

2–
2kz

-----------------cαq
Vq' q–

2kz
---------------cαq'

q'
∑+ γαcαq=

M{ }c γ I{ }c=
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where  is the identity matrix and the matrix elements of M are:

. 

A necessary condition to solve equation (22) is:

 .

When the dimension of the  basis is n (1 transmitted and n -1 diffracted

beams), the eigensystem will provide n eigenvalues  and n eigenvectors 

called eigenstates (i.e. Bloch waves). Some of the eigenstates can be degenerated

depending of the symmetry of the diffraction experiment. When there is no

degenerate state, each state corresponds to a Bloch wave with a different kinetic

energy, but the same total energy.

Example
Here one considers a diffraction experiment where only 5 beams are excited (figure 
4):
• crystal is Al fcc,
• zone axis is [0,0,1],
• exact zone axis condition (c = 0),
• accelerating voltage is 100 kV.

•  basis: 

I{ }

Mij
qi

2
χ

2–
2kz

-------------------δij
1

2kz
--------Vqj qi–+=

Det M{ } γ I{ }–[ ] o=

q| 〉{ }

γα α| 〉

q| 〉{ } 00| 〉 20| 〉 02| 〉 20| 〉 22| 〉, , , ,{ }

|02>

|20>|-20>

|0-2>

|00>

V22

V20V40
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FIGURE 4. 5 beams diffraction experiment. The arrows show the interaction between the different diffracted 
beams.

The secular matrix is:

The Fourier coefficients of the potential V|00>-|20>,V|20>-|02>,V|20>-|-20> (matrix

elements Vq'-q) have been identified as U20, U22 et U40 respectively. The “strength”

of the dynamical interaction between the transmitted beam |00> and the diffracted

beams |20> is proportional to U20. It is proportional to U22 for the interaction

between beams |20> and |02>, and to U40 for |20> et |-20>. The numerical values

are given below (arbitrary units).

FIGURE 5. Numerical coefficients of the secular matrix (5 beams experiment)

The eigenvalues correspond to Bloch waves of different energy. The lowest energy

(-2.95) is attributed to a core state written as state 1s. In this particular diffraction

experiment only 2 states are excited, state 1s and state 2s (21.1). These states are

totally symmetric, they correspond to type A1 irreducible representation of C4v.

|00> |20> |02> |-20> |0-2>
|00> 0 V20 V20 V20 V20
|20> V20 h22 V22 V40 V22
|02> V20 V22 h22 V22 V40
|-20> V20 V40 V22 h22 V22
|0-2> V20 V22 V40 V22 h22

TABLE 2. Secular matrix of the 5 beams diffraction experiment.

i

k

0 -3.946 -3.946 -3.946 -3.946

-3.946 24.39 -2.392 -2.392 -1.443

-3.946 -2.392 24.39 -1.443 -2.392

-3.946 -2.392 -1.443 24.39 -2.392

-3.946 -1.443 -2.392 -2.392 24.39

y

{
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FIGURE 6. Eigenvalues of the 5 beams diffraction experiment. Eigenstate 25.8 suffers is 2 fold degenrated. 

FIGURE 7. Eigenstate |a> coefficients. The excitation coefficients of the anti symmetric eigenstates are 
null. The irreducible decomposition of the C4v representation in the 5 plane waves basis is 2A1 
+ B1 + E. Only the eigenstates  with the symmetry of the irreducible representation A1 are 
excited.

As stated above the Bloch wave approach to the dynamical theory of electron

diffraction has the advantage to place the symmetry properties of the eigenstates in

the forefront. Furthermore using these symmetries it is possible to put the secular

matrix into a block diagonal form and to reduce the size and time of the

calculation.

827.7, 25.8, 25.8, 21.1, -2.95<

i

k

0 0.5 -0.5 -0.5 0.5

0 0.353 -0.613 0.613 -0.353

0 -0.613 -0.353 0.353 0.613

-0.35 0.468 0.468 0.468 0.468

-0.937 -0.175 -0.175 -0.175 -0.175

y

{

cα
oo| 〉

cα
2o| 〉

cα
o2| 〉

cα
2o| 〉

cα
o2| 〉α

1
2
3
4
5

B1

}E
A1
A1

α| 〉
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FIGURE 8. With a symmetry adapted basis, the secular matrix is put into a block diagonal form.

In our case it is also immediate to obtain an analytical expression of the eigenstates.

Without such a reduction there will not be an analytical solution as the

characteristic polynomial is of degree 5. With the reduction of C4v to 2A1 + B1 + E,

the analytical eigenvalues are given by the solutions of 3 characteristic

polynomials, two of degree 2 and one of degree 1! Finally the 5 beams diffraction

problem reduces to find the solutions of the following secular matrix.

FIGURE 9. Using group theory and a symmetry adapted basis the secular matrix of the 5 beams problem 
reduces to a 2x2 matrix.

i
k

h11 h12 0 0 0
4 h12 h22 + 2 h23 + h25 0 0 0
0 0 h22 - h25 0 0
0 0 0 h22 - h23 h23 - h25
0 0 0 h23 - h25 h22 - h23

y
{
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The approximation of the Fresnel propagator

This is the approximation that corresponds to the propagation of the incident

electron in vacuum or between thin crystal slices where the crystal potential V(r;z)

is null. In that case H reduces . 

H is then diagonal in the  basis (plane waves):

. 

The evolution operator is also diagonal in :

 (23)

Without a diffusing potential, the incident wave function is not modified:

. 

In real space propagation from point  to point  is given by:

 (24)

But:

  

and

H 1
2kz
-------- ∆ρ– χ

2–( )=

q| 〉{ }

H q| 〉 q2
χ

2–
2kz

----------------- q| 〉=

q| 〉{ }

U z o,( ) e Hz– qd e
iq

2 χ2–
2kz

----------------z–
q| 〉 q〈 |∫= =

U z o,( ) o| 〉 o| 〉=

ρ1| 〉 ρ2| 〉

ρ2〈 |U z o,( ) ρ1| 〉 qd e
iq

2 χ2–
2kz

----------------z–
ρ2 q〈 | 〉 q ρ1〈 | 〉∫=

ρ2 q〈 | 〉 qd δ ρ ρ2–( )eiq ρ⋅
∫=
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 . 

Finally when :

  (25)

This is the Fresnel propagator expressed in direct space (  basis).

Phase grating approximation

Here H is assumed to be:

 . 

H is then diagonal  representation.

. 

The evolution operator is:

 (26)

At thickness z, the wave function is:

 (27)

q ρ1〈 | 〉 qd δ ρ ρ1–( )e iq– ρ⋅
∫=

χ 0=

ρ2〈 |U z o,( ) ρ1| 〉 qd e
i q2

2kz
-------z–

e
iq– ρ1 ρ2–( )⋅

∫ e

ikz– ρ1 ρ2–( )2

z
----------------------------------

= =

ρ| 〉{ }

H 1
2kz
--------V ρ z;( )=

ρ| 〉

H z( ) ρ| 〉 1
2kz
--------V ρ z;( ) ρ| 〉=

U z o,( ) ρd e

i–
2kz
------- V ρ τ;( ) τd

o

z

∫
ρ| 〉 ρ〈 |∫=

ψz| 〉 U z o,( ) o| 〉 e

i–
2kz
------- V ρ τ;( ) τd

o

z

∫
o| 〉 e

i– σVp ρ( )
o| 〉= = =
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This is the phase grating approximation, that is the base of the multislice approach

for the calculation of the complex exit wave function. The crystal is sliced into thin

enough, the potential of each slice is projected on a plane and form a phase grating.

The incident wave function is multiplied by the phase grating of the slice and

propagated to the next. The propagation is usually performed in dual space.

Power series method

When H does not depend on z, the evolution operator  can be

developed in a power series of z:

 (28)

To third order the diffracted beam  is:
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and ,

  is calculated by summing the power series of the diffraction matrix
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To first order (kinematical approximation), diffraction introduces a  dephasing of

diffracted beams. One has to remember that in this approximation, the diffracted

beams do not interfere with the transmitted beam. In high resolution electron

microscopy this dephasing is more or less compensated by the phase changes

introduced by the specimen defocus and by the spherical aberration of the

objective lens of the microscope.

z dependent crystal potential

In that case the evolution of a diffracted beam  is given by:

 (29)

Using the closure relation one obtain:

 (30)

Writing  as , the matrix elements of H are:

This equation shows clearly the coupling of the diffracted beams due to the crystal

potential. In many books and research papers on the theory of electron diffraction

the coefficient  is known as the excitation error . It is

proportional to the distance of the reciprocal node  to the Ewald sphere.
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Reflections at Bragg conditions are such that  is zero. With the  equation 30

becomes:

This equation has been first proposed by Howie-Whelan [Hirsch, 1977]. They are of

great practical importance in the frame of the column approximation employed to

calculate the contrast of crystalline defects such as dislocations or interfaces. Their

numerical solution is obtained by Runge-Kutta integration.

Final remarks

All these different techniques are equivalent for the calculation of the exit wave

function, but each has a specific domain where it performs better in terms of

computation ease or speed. Figure 10 shows two calculations, one using the Bloch

wave approach and the other using the multislice method. There are indeed small

differences in the intensity, but it obvious that such differences will not appear in

simulated images.
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FIGURE 10. Multislice & Bloch wave simulation of (2,0,0) beam. Al 400kV, zone Axis [0,0,1]

Bloch wave approach is more accurate when the dynamical calculations must

include High Order Laue Zone reflections, like CBED and LACBED patterns

(figures 11, 12) while multislice is definitely the method to use for the simulation of

HREM images of defects (figure 13).

FIGURE 11.  Bloch wave calculation Al [1,3,3]. Kinematical HOLZ lines are superimposed (HOLZ shift 
included).
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FIGURE 12. Bloch wave calculation Al [1,3,3]. 
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FIGURE 13. HREM image map Au S53 001.
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