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Abstract  

The small-angle approximation usually encountered in 
dynamical theories of fast electrons essentially leads to 
a transformation of the propagation-direction variable 
z into a time-like parameter [Berry (1971). J. Phys. C, 
4, 697-722]. The three-dimensional stationary 
Schr6dinger equation is then approximated by a 

two-dimensional 'time'-dependent equation which may 
be solved by using the standard time-perturbation 
techniques encountered in quantum mechanics. The 

basic idea of the present approach consists in studying 
the evolution operator U(z,zo) instead of the wave 

function. Depending on the choice of bases, the matrix 
elements of U(z,zo) represent either the transition 
probabilities of diffraction or the kernel function of the 
propagation issued from Feynman-path integral theory 

[Berry & Mount (1972). Rep. Prog. Phys. 35, 315-397; 
Van Dyck (1975). Phys. Status Solidi, 72, 321-336; 

0108-7673/83/040576-09501.50 

Jap & Glaeser (1978). Acta Cryst. A34, 94-102]. 
Special attention is devoted to the so-called 'Bloch 
waves' and 'physical-optics' formulations which both 
correspond to the same perturbation expansion but 
with two different unperturbed 'Hamiltonians'. 

I. Introduction 

The dynamical theory of elastic scattering of fast 
electrons is of great importance for the understanding 

of contrast formation in electron microscopy and 
diffraction images. The methods which have been 

derived in the past twenty years may be classified in 
two general classes, those formally considering the 
crystal as an infinite three-dimensional medium (Bethe, 
1928; Darwin, 1914) and those considering the crystal 
as an infinite number of successive planes of 

infinitesimal thickness (Cowley & Moodie, 1957a,b). 

© 1983 International Union of Crystallography 
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Several discussions have clearly demonstrated the 
equivalence of these two types of approaches for 
small-angle scattering (Goodman & Moodie, 1974; 
Moodie, 1981; Van Dyck, 1980; Buxton, 1979). 

The purpose of the present paper is to derive a simple 
formalism based on quantum-mechanical perturbation 
theory. 

II. Evolution operator for small-angle elastic scattering 

The basic equation for time-independent elastic scatter- 
ing is given by (in relativistic units) (Fujiwara, 1961) 

(V 2 + I~) W= V~, (1) 

where k o is the relativistic wave vector and V the 
corrected scattering potential given respectively by 

'(2 ko=- ~ moE +--~1 (2) 

V= 2 o +--~ v(r)/h2. (3) 

Let z be the optical axis assumed to be close to the 
initial propagation direction k 0 and let K be the 
component of k 0 along z and X the component of k 0 in 
the x,y plane (Fig. 1). 

e -  

x,~ 

=y 

g 

Fig. 1. The x,y plane is defined by the entrance surface of the 

sample and is supposed to be nearly perpendicular to k o. The 

small-angle-scattering approximation consists in assuming that 

the large component K of k o along z remains almost unchanged 

during the scattering. The small component X of k o in the x,y 

plane corresponds to the obliquity of the incident wave. 

Extracting the chief component of the z dependence 
of ~Uin the form 

~ =  gt exp(iKz) (4) 

and neglecting the second derivative of q/with respect 
to z, one obtains 

co 1 
i - -  x v) 

coz 2 - F  - + (5) 

Equation (5) makes explicit use of the fact that the 
scattering potential is sufficiently small with respect to 
the incident energy that the component of the motion 
along z remains almost unchanged during the scatter- 
ing process. Equation (5) is formally similar to a 
Schr6dinger equation for a two-dimensional system 
with a time-dependent potential (Berry, 1971). 

The causal evolution operator U(z,zo) with respect to 
z is defined by 

co 
i co---z U(z'z°) = H(z) U(z,zo) (6) 

or  

U(z,zo) = 1 - i / U(z,r) H(r) dr. (7) 
g0 

H(z) is the 'Hamiltonian' of the 2D system: 

1 
H(z) = ~ ( -V 2 -  Z 2 + V), (8) 

where V 2 stands for the 2D Laplacian. 

In the 2D configurational space the eigenvectors Ipo ) 

and Iqo ) of position P0 and momentum qo are 

(plpo) = 6 ( p -  Po) (9) 

(plqo) = exp iqo. P ,  (10) 

where, in (10), the normalization constant 1/2re has 

been dropped for simplicity. 
As usual, the Hermitian scalar product is defined by 

(~,lp0) = ~,(p0) = f ~,(p) 6 ( p -  po) d2p (11) 

in the {p} representation, and 

(VA qo) =_ ~r(~,) (12) 

with 

3-(~,) = f ~,(p) exp(iqo, p)d2p (13) 

in the {q / representation. 
The initial state, say I0>, is an eigenvector of the q 

momentum corresponding to the projection of k 0 in 

the x,y plane: 

(pl0) = (plx) = exp(i~a). (14) 

In these standard bracket notations, diffraction and 
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images correspond to the following transition prob- 

abilities: 

{q};gOo.q(Z,Zo) = I(qtU(z,zo)lO)l ~ (15) 

{P};C°0 .p(Z,Zo)= If (plq) F(q) 

x (q lU(z ,zo) lO)d  2 ql 2, 

(16) 

wherel in (16), F(q) stands for the filter function* due to 
the different aberrations of the microscope (objective 
aperture, spherical aberration, defocus, astigmatism, 
• • . ) .  

The purpose of the dynamical theories of high- 
energy electron diffraction consists in finding some 
approximate solutions of the master equation (6)• 
Subsequent use of (15) or (16) will lead to the 
diffraction or image intensities. 

Both initial and final states 10) and Iq) (which 
correspond to the usual boundary conditions) are 
known; the only remaining problem consists in the 
determination of the transition probabilities from the 
initial to the final states. 

Equation (6) may generally not be integrated 

analytically and standard time-dependent perturbation 
theory has to be used: we will see in {} IV that the 
perturbation series leads to the Cowley-Moodie 
(1957a,b) formulation when the unperturbed Hamilto- 
nian is the free propagator. In {} III we will derive some 

of the possible solutions for U(z,z o) when the potential 
is z independent or when the sudden-perturbation 

approximation may be used. 

III. Special integrated expressions of the z-evolution 
operator 

III-1. Projected potential and free propagation 
approximations 

If H(z) and (O/Oz)H(z) commute, U(z,zo) takes the 
simple form 

U(z,zo) = exp - i ; H(z) dr. (17) 
Zfl 

The commutation relation 

H(z), ~z H(z) = 0 (18) 

is certainly satisfied if the potential V is assumed to be z 

independent. In practical cases this assumption consists 
in replacing the actual potential V(r) by the projected 
average potential V: 

z 

p _ _ _ l  i V(r)dr. (19) 
Z - -  Z 0 . 

z 0  

* F o r  a non- l inear  t ransfer ,  F (q )  is no longer  d iagona l  on the {q/ 

basis .  

The approximate Hamiltonian is then 

1 
H ~ _ - -  ( - 7 2 -  Z 2 + V). (20) 

2K 

Substituting (20) in (17) we obtain the z-evolution 

operator 

U(z,Zo) = exp[--iH(z - z0)]. (21) 

Designating by I j )  and 7j the eigenvectors and eigen- 
values of H, 

HI j ) =  7jIj), (22) 

we obtain the standard form of the z-evolution operator 
(see, for instance, Messiah, 1965): 

U(z,zo) = I I j )exp[- iy j (z  - z0)](jl dj. (23) 

In {q} representation (22) can be written 

t q 2  _ X 2 
~ 7j) (q l j )  

lr + - -  ( q l V I q ' ) ( q ' l j ) d q ' = O ,  (24) 
2 K .  

where ( q l j )  is the Fourier transform of I j )  and 

(ql V l q ' ) t h e  2D Fourier coefficient of the projected 
potential V for the q' - q vector. If P is periodic in the 
(x,y) plane, then the matrix elements are discrete and 
so are the Ij) 's and yj's. Equation (24) may then be 
solved from the usual eigenvalue equation, 

d e t ( M -  yI) = 0, (25) 

where I is the identity matrix and M the so-called 
scattering matrix defined by (Tournarie, 1960, 1961, 
1962) 

q] -- Z 2 1 _ 
Mu - ~u + V (26) 

2K - ~  qi-qi" 

One recognizes here the Sturkey (1962) formulation. 
The Ij) eigenfunctions are the usual Bloch waves (for 
periodic x,y potential) of the two-dimensional system 

whereas the eigenvalues are the A npassung parameters 
(see, for instance, Hirsch, Howie, Nicholson, Pashley 

& Whelan, 1965). 
The transition probability from state 10)to state Iq), 

which is usually designated by I~0ql 2, is directly 

obtained from (23): 

1~ool2= I(qlU(z,zo)lO)] 2 

= ].I e x p [ - i Y j ( z -  z o ) l ( q l j ) ( j l O ) d j ]  2. (27) 

For an (x,y) periodic crystal the probability amplitude 
~pq is 

rpq = )_f. e x p [ - i T j ( z -  z0)] ( q l j ) ( j l O ) ,  (28) 
J 

where (q l j )  and ( j l0 )  are respectively the component 
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of the Iq) state on the Ij)  state and of the Ij)  state on 

the 10) state. These components are generally denoted 
by (Howie & Whelan, 1961) 

(qlj) = C~; (riO) = C~ q. (29) 
m 

A special case arises when the potential V vanishes: 
this corresponds to the free propagation in vacuum. 
The Hamiltonian H ° becomes then 

1 

H ° = -  (--V 2 - Z 2) (30) 
2K 

and is diagonal on the {q} basis 

q2 _ Z2  

H°lq) = - - I q ) .  (31) 
2K 

The corresponding U°(z - Zo) evolution operator may 

be written as [from (23)] 

g°(z,zo) = Iq) exp i - -  ( z -  z0) (ql dq. (32) 
2K 

This operator is one of the basic ingredients of the 
multislice method and is called the propagator. Ex- 
pressed in direct space (on the {p} basis) the propa- 

gator is no longer diagonal and can be written as 

(Pl I U°(z,zo)lpo) = f (P~ Iq) (ql U°(z,zo)lq) (qlP0) dq 

(33) 

leading to 

(pllUO(z,zo)lPo) = Cteexp[~ K ( p , -  p0) 2 ] 
2 ( z -  z-~ ] '  (34) 

which corresponds to the Fresnel propagator initially 

introduced by Cowley & Moodie (1957a,b) in the 
'physical optics' approach (see Cowley, 1975). 

111-2. The sudden-perturbation approximathgn 

For very short interaction times (here for very thin 

crystals), the sudden-perturbation approximation may 

be used, stipulating that the evolution operator may be 
approximated by the identity 

U°(z,zo) ~_ L (35) 

The perturbed evolution operator U(z,zo) is then 

expanded in a perturbation series: 

o o  

U(z,z o) = U°(z,zo) + Y U(")(Z,Zo), (36) 
n = l  

where the nth-order term has the general form 

uln)(z,Zo) = (--i) n f dr n dr,_ 1"" dr1 
z _> r n >_ z n_ l > . . .  -> r ,  > z 0 

! U°(z,r,) V(r,) U°(r,, r,_ l) ! ... 

! U°(r2,rl) V(rl) U°(rl,z0). (37) 

We will come back to this general standard formula in 

§ IV. For the present context, introducing (35) into 
(37), we simply obtain 

U('O(Z,Zo) = (-i)  n 1"+ 1 f V(rn) 
z _> r n _> r . _  1 _ > . . .  >_ r~ _>z  0 

x V(r ,_I) . . .  V(rl)dr ,  dr ,_l  ... dr1,(38) 

which, after some algebraic manipulations, leads to 

(-i)"I"+l V(r)d (39) U(")(Z,Zo)= n! 
Zo 

Then, from (36), the perturbed evolution operator 

reduces to 

U(z,zo) = I exp - / ;  V(r) I dr. (40) 
z0 

This operator is diagonal on the p basis with eigen- 

values exp - i  f~o V(o,z) dr, where p explicitly defines the 
x,y dependence of V: 

U(z,zo) = f Ip) exp - i  ; V(p,z) dr(pl dp. (41) 
so 

This operator (41), which we call the diffractor, 
corresponds to the usual phase-grating approximation: 

it is the perturbed evolution operator in the sudden- 
perturbation approximation. In the first order, it 

simplifies to 

U(z'z°)= f l p ) [1 -  i ; V(P'Z)] (p' (42) 

which is the so-called weak-phase-object approxi- 
mation; in this approximation only one interaction is 
supposed to occur between z 0 and z, meaning that the 
perturbation potential is very small with respect to the 

incident energy and that the crystal is thin enough for 

the sudden perturbation to be valid. In order to have a 
criterion of validity for such an approximation we can 

expend the evolution operator in a Born-like series. 

From (7), 

T T 

U(T,O)= 1- - i - '  T f  H(z) dr + (0 -2 T2f dr, 
0 0 

r l  

X f dz" 2 H(rl) H(r  2) + . . . ,  (43) 
0 

where it has been assumed that the Hamiltonian H ° for 

z < z 0 = 0, suddenly changes to H ° + V during the 
passage of the electrons through a crystal of thickness 
T and then back to H ° for z > T. Since the sudden 
perturbation consists in approximating the final state 

I f )  as equal to the initial one, 10), simply multiplied by 
a phase factor, 

I f ) =  U(T,O)lO)~_ exp (iO) l O), (44) 
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we may calculate the probability co of finding the 

system in a state different from I0) and determine the 

thickness such that this probability is negligible. Then, 

let Q be the operator of projection on the space 

orthogonal to I0): 

Q = I -  I0)(01. (45) 

The probability co is then 

o9= [(OIU+(t,O)QU(T,O)IO)[ 2 (46) 

and has to be small with respect to 1. 

Replacing now U(T,O) by (43), we obtain, to second 

order in T, 

co= T2{(01H210)--(01HI0) 2} + T a.. . ,  (47) 

where /~ = f0rH(r)dr and H(r) is given by (8). 
Choosing as initial state 10) the plane wave 

(pl0) = exp(i•p), (48) 

and assuming the potential to be periodic in the x,y 
plane, we obtain finally 

2K 
T ~  , (49) 

where the Vg are the two-dimensional Fourier 

coefficients of the projected potential V(p). Condition 
(49) stipulates the range of validity of the phase-grating 

approximation. As expected, this approximation is 

better for increasing voltage and for atoms of low 
atomic number. 

III-3. The multislice method (Goodman & Moodie, 
1974) 

Initially considered as an approximate expression 

suitable for numerical calculations of the Cowley- 

Moodie expansion (see {} IV-2), the multislice method 
consists of successive and repeated use of propagator 

and diffractor: the crystal is considered as a stacking 

sequence of 'slices' separated by vacuum. In each slice 

the scattering is treated as a sudden perturbation; the 

thickness of the slice is chosen to be thin enough for 

inequality (49) to be satisfied. Between two successive 

slices the free propagator U ° is used. 

UMs(nT) = Uo(T) U~ ") (T) ... Uo(T) U~ 2) (T) 

x Uo(T ) U~')(T). (50) 

IV. Approximate evolution operator for z-dependent 
potential 

For a z-dependent potential the integrated form (17) is 
no longer valid. One has therefore either to evaluate the 

differential equation (7) numerically step by step or to 

expand U(z,z o) in a perturbation series. The first case 

corresponds to the so-called Darwin (1914) approach, 

while the second one leads either to the Cowley- 

Moodie formulation or to a slightly modified form of 

the Buxton (1976) approach according to the type of 

the chosen unperturbed Hamiltonian. 

IV-1. The Darwin-type approach (Darwin, 1914) 

In order to integrate (7) numerically, U(z,z o) has to 

be expressed on an appropriate basis. The natural one 

is the q basis since the initial state is an eigenvector of 

the q momentum. Choosing, for simplicity, z o > 0, we 

obtain 

0 q2 _ X 2 

i - -  (qlU(z)lO) - - -  (qlU(z)lO) 
Oz 2K 

1; 
+ - -  (ql V(z)lq'  ) 

2K 

x (q'lU(z)lO)dq'.  (51) 

The amplitudes of transition probability from the initial 

state 10) to the final state I q) are usually denoted by 

~0q(z): 

(0q(z) = (ql U(z)10). (52) 

For an x,y periodic potential the only non-zero 

transition probabilities are those corresponding to the 

nodes of the 2D reciprocal lattice; (51) then becomes 

c0--~ ~0g(z) = in 2~(g) ~0g(z) + Z vg_g,(z) ~og,(z , (53) 
g' 

where 

Z 2 -  (Z + g)2 
~(g)= 

4rdg 

(glV(z) lg ' )*  
v~_g,(z) = - (54) 

2rag 

are the usual 2D excitation-error parameter and 

reduced 2D scattering potential, respectively, both 

well-known in the Darwin theory. 

IV-2. General perturbation expansion 

The general Hamiltonian may be written as a sum of 
a z-independent operator H ° plus a z-dependent 

perturbation W(z): 

H(z)  = H ° + W(z).  

Two natural choices are possible for H ° and W(z): 
(i) If H ° is simply the free propagator Hamiltonian 

1 
H ° = - -  ( -  V 2 - X2), (55) 

2K 
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then the perturbation term is the whole potential 

V(z) 
W(z) - ; (56) 

2K 

the unperturbed eigenfunctions, eigenvalues and 

evolution operator are respectively the plane waves I q), 

the excitation errors (q2 _ X2)/2K and the free 

propagator (32). 

(ii) If H ° is the sum of the free propagator plus the 

projected potential (or average potential) 

1 
H 0 = - - ~  ( - V  2 -- Z 2 + 17") (57) 

then the perturbation term is the oscillating part of the 

potential along z 

W(z) = [V(z) - V]/2K (58) 

and the eigenfunctions, eigenvalues and unperturbed 

evolution operator are now respectively the Bloch 

waves, the A npassung parameters and the evolution 

operator given by (23). 

Case (i) corresponds to the so-called 'physical- 

optics' approach proposed by Cowley & Moodie 

(1957a,b) while case (ii) corresponds to the more recent 

derivation of Buxton (1976). Both of these theories 

may be obtained from standard time-dependent per- 

turbation theory given in (36) and (37). The physical 

significance of the nth-order term [(37)] is straight- 

forward: After a free propagation from z 0 to r~, 

electrons interact with the perturbation potential at the 

level r~ and then propagate freely to rz, where a second 

interaction occurs, etc.; the nth order corresponds to n 

interactions so that the electrons pass through n - 1 

virtual states (Fig. 2). Between two successive inter- 

I 0 > ~  

• ) L _  v(r,) 
I11> ~ 

\ 

• ) L  v(r,_, ) 

~J°-'> ~--e-_v(ro)-- 
Jo> 

Fig. 2. The nth-order perturbation term corresponds to a suc- 
cession of n interactions between the electrons and the per- 
turbation potential. It is a multiple-diffraction term. Obviously, 
all intermediate states Ij~), L j2), Ij,_~) are virtual states, the 
actual measured transition being from [0) to I j ,).  

actions the electrons propagate according to the 

eigenstates of the unperturbed Hamiltonian. The 

perturbation introduces transitions between the original 

eigenstates. 

Let I j )  and yj be the eigenfunctions and eigenvalues 

of the unperturbed Hamiltonian [which may be case (i) 

or (ii)]. The nth-order perturbation term may be written 

as [from (37)] 

U(')(Z,Zo) = ( - i ) "  f d r . . . ,  d~" 1 
z > r n > r,_ t >- ... -> rl -> z0 

x Z Z ... Z Z ( j , I  w ( r , ) l j , _ l )  
J ,J , - l . . .  J~ Jo 

x (jn_IlW(r,_I)Ij,_2)... (jllW(rl)ljo) 

x exp - - i [ ?y , ( z -  r,) 

+ ~j ._ , ( r , -  r,_ l) + ... 

+ yjo(r l -  zo)]lj,)(jol, (59) 

where the perturbation terms of successive order satisfy 

the following recursive relation: 

U('+l)(Z,Zo) = - i  ( dr  Z Ij) exp[-iyj(z - r)] 
, J  ).j' 
zo 

x (jlW(r)lj')(j'lU(')(r, zo). (60) 

The matrix elements of the perturbation potential 

(jl W(z)lj') are either the usual 2D Fourier transform 

of the potential when the I j )  basis is the q basis 

(qlW(z)lq')= W'(Z)q,_ q, (61) 

or the components of W on the Bloch-wave I j )  basis. 

Explicitly stated with respect to the usual Fourier 

coefficients they are given by 

(j lW(z)lj ' )= • (jlq)(qlW(z)lq')(q'lj') (62) 
q,q' 

or, with notations (29),  

(j lW(z)lj ' )= ~. C *J W(Z)q,_qCJ;. (63) 
q,q' 

IV-2-1. First-order expansions. The first-order term 

is easily obtained from (60) by taking n = 0: 

U°)(Z,Zo)=-i / drZ ~ Ij)exp{-i[Tj(z-r) 

, p  

j j' 
Zo 

+ y j , ( r -  Zo)]} (jlW(z)lj ')(j 'l .  

(64) 

This term, corresponding to the single-transition 

approximation, leads to both the z-dependent 

kinematical theory (I j )  = I q)) and the first-order 

interband transition in the Bloch-wave formulation 

(Buxt0n, 1976). 
The most important feature arising from the present 



582 TIME-LIKE PERTURBATION METHOD 

approach is the resonance-like effect which occurs for a 

periodic potential along z [actually the only require- 

ment is that the perturbation potential W(z) be periodic 

between z 0 and zl. Then, supposing W(z) to be periodic 

along z, we expand it in Fourier series: 

W(z) = ~ W l exp(--ilcoz), (65) 
l 

where co = 2n/e, c being the period along z. The matrix 

elements of Wt on the q basis are now the usual 3D 

Fourier coefficients of the potential 

(ql Wllq' ) = Wq,_q,t, (66) 

the term l = 0 being zero for case (ii). 

Introducing (65) into (64), we obtain, after in- 

tegration (z 0 = 0), 

U(1)(z,O) = --i Z Y I j) exp (--i~jz) exp (iOtj J, Z) 
l jj' 

sin Ouj, z 
x (jl Wllj' ) - -  ( j ' l  (67) 

% '  

with 

y j -  y j , -  Ico 
0tjJ' = 2 (68) 

so that the amplitude of transition probability from I j0 ) 

to I j l )  is given by 

(jtlU(t)(z,O)ljo) = - i  • exp(--iTj z) exp(iOlj, A z) 
1 

sin OljlJoZ 
! (j~l W/I j0 ) - -  (69) 

OlJlJ 0 

The contribution of the different harmonics is governed 

by the argument of the sine function and will be 

important only if 

1 
[Olj,jol ~, --, (70) 

z 

i.e. if the difference between the two involved eigen- 

values is close to an integer value of the reciprocal- 

lattice vector c*. 

Let us first consider the Cowley-Moodie for- 

mulation: as initial state we have to choose the L0) 

vector. The eigenvalues involved in the transition to the 

I q) state are respectively 

q2 _ X 2 X z _ X z 
and ~ ) 0 - - -  - 0, (71) 

YJl - 2K 2K 

so that the 0 term becomes 

1( q2-Z2  leo) (72) 

This term corresponds to the Bohr frequency of the 

transition through the /th harmonic and defines the 

excitation parameters which have to be used for 

upper-layer diffraction spots (l 4: 0): 

s(q,l) = ~(q , / ) -  t/c. (73) 

It is now easily shown that the resonance peak of this 

/th harmonic is centred on the usual q,l Bragg peak of 

the 3D reciprocal lattice. In fact, let k t be the 3D wave 

vector defined by (Fig. 3) 

( ' )  k I =  K + 2 n -  n z + q ,  (74) 
C 

where n z is the unit vector along the z direction. A 

simple calculation shows that 

kt - k° O 1 
2-K - 2 n  - ~ ( q  + , (75) 

so that the centre of the resonance peak (0 = 0) 

corresponds to Iktl = Ik0[, i.e. to the 3D q-l reciprocal 

node being on the Ewald sphere. 
According to the present approach the Ewald sphere 

may be considered as the geometrical locus of zero 

Bohr frequency. As usual in the small-angle scattering 

approximation, the Ewald 'sphere' is a paraboloid 

defined by 

( x - X o )  2 + (y- -yo)  2 
+ z = 0, (76) 

2K 

I e 

l 

Fig. 3. For a periodic potential along z resonance-like peaks 
appear, the maxima of which are located on the nodes of the 3D 
reciprocal lattice: for thick crystals, the 3D reciprocal space is 
essentially recovered. 
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where x 0 and Y0 designate the coordinates of the X 

vector. 
The width of the resonance peak being approxi- 

mately 1/z, the contributions of the different l har- 

monics will not overlap for crystals sufficiently thick: 

the 3D reciprocal space will be essentially recovered. 

This fact may equally be understood as a time-energy 
Heisenberg inequality. Thick crystals give rise to a long 
interaction time and therefore the transition levels are 
well defined (sharp resonance peaks). On the contrary, 
for thin crystals corresponding to short interaction 

times, the resonance peaks are broadened and different 

Bragg reflections of different layers of the reciprocal 
lattice may overlap. At the limit of infinitesimal 

thickness (sudden perturbation), the resonance peaks 
become continuous lines along z. Hence the progressive 
passage from two- to three-dimensional diffraction as 

the thickness increases is naturally described by the 

present approach, i 
A similar analysis may be performed starting with 

the Hamiltonian of case (ii) (free propagation plus 
projected potential). The transition probability at the 

first order is found to be 

<qlU(')(z,O)lO) = - i  ~ Z ~.exp(- iYjz)exp(iOuj 'z)  
j , j '  g , g '  1 

! C~C~J(g[Wllg ' ) 

x C~; C~ J' sin Olj J, Z, (77) 

0,j , 

whereas the transition-probability amplitude between 
two Bloch waves (eigenstates of the unperturbed 
system) given by (69) has exactly the same form as the 
kinematical probabilities. However, it is clear that the 

I j )  basis is, without doubt, a well adapted basis 

convenient for a perturbation treatment: the zero order 

leads to the usual 2D dynamical theory, whereas the 

I q) basis gives the kinematical one. Even at first order 

[(77)] this treatment is expected to be a challenge to the 

general Cowley-Moodie expansion. 
IV-2-2. General perturbation expansion. It is easily 

shown from (59) that the general perturbation term is 
the Cowley-Moodie expansion when the unperturbed 
Hamiltonian is the free propagator. The matrix element 
(ql U~"~(Z,Zo)lO) can then be written as 

<ql U~')(Z,Zo)[O> = (- i)"  ( d r , . . ,  dr l 
z'>rn'>r,, I > . . . >  T~'>Z o 

× Y X . . .X (qlV(r.)lq._~) 
q n -  ! qn -  2 qt  

! (qn_ , tV(r ,_ , ) lq ,_2) . . .  

x (q~l V(r~)10) exp -i[7q(z -- z,) 

+ 7q._,(r.--Z'n- l )  + . . .  

+ Yq,(~'2- r,)l, (78) 

where yq = ( q 2  _ X2)/2K. Using now the recursive 

relation (60) and introducing 

~O~q")(z,zo) = i exp[iyq(Z - zo)](qlUt")(z,zo)lO), (79) 

we obtain 

~0("+~)(Z,Zo) = - i  Z ; dr exp{[y(q) - 7(q')] r} q 
qt  go 

! <qPV(r)lq')~o~,~(r, Zo). (80) 

Here again, we infer from (80) that the relative 

contributions of the different harmonics of a periodic 

potential along z are governed by the argument of the 
exponential, namely 

20qq,t= 7 ( q ) -  7(q ' ) - lo9 ,  (81) 

showing, as is well known, that the only important 

terms are those arising from reciprocal-lattice nodes 
located near the Ewald 'sphere'. If we now choose the 
unperturbed Hamiltonian by including the average 

projected potential, (59) gives the general nth-order 

transition between Bloch waves. Unfortunately, like the 

original Cowley-Moodie formulation, this expression is 

not suitable for numerical calculations. However, a 

multislice-like method may be used by replacing the 

optical propagator (32) by (23) where the unperturbed 

Hamiltonian includes the average projected potential V. 
The diffractor is calculated in the sudden-perturbation 

approximation [(40)] where the potential has been 

replaced by 

W(r) = ( V ( r ) -  lk)/ZK. (82) 

Such a method essentially consists in replacing the 
crystal by a z-independent crystal with slices corre- 
sponding to the local z variation of the potential. 

V. Conclusion 

Time-dependent perturbation theory provides a natural 

and straightforward way to derive pre-existing theories 

of dynamical diffraction of fast electrons. This 

derivation is based fundamentally on the small-angle- 

scattering approximation, the principal effect of which 
is to transform one of the dynamical variables into a 
time-like parameter. As a result, the usual Schr6dinger 

stationary-state equation becomes a time-dependent 
causal equation of a two-dimensional system. The 

introduction of the evolution operator leads to a simple 
and direct expression of the transition probabilities. 
Existing theories actually correspond to the different 
ways of calculating the evolution operator (Table 1). 

So far, all possibilities offered by the time-dependent 
perturbation theory have not been used in the present 
study. For example, if a relatively smooth z variation of 

the potential inside the crystal may be assumed then the 
adiabatic approximation gives new possibilities to solve 
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Table 1. Correlations between some of the principal 
descriptions of the elastic scattering of electrons 

1 V(z) 
H ( z ) = - - ( - V  2 -2  '2+ V(z))=H ° + -  

2K 2K 

I z-independent potential: I2 [ 

Zero-layer approximation 
or 

Projected-potential approximation 

Plane-wave expansion Bloch-wave expansion V = 0 

[ Diffraction matrix [ [ Secular equation ] [ Fresnel propagator ] 

Darwin (1914 
Sturkey (1962) 

Tournarie 
(1960, 1961, 1962) 

Howie--Whelan ( 1961) 

Bethe (1928) 
Kambe (1967) 

Howie-Whelan (1961) 

Multislice method I 

Goodman-Moodie 
x l  1 (1974) 

z-dependent potential [ l 

Perturbation expansion I 

Plane w a ~ e r t u r b a t i o n  

I Physical optics I I Interband transition [ I Phase object I 
k 

Cowley-Moodie Buxton (1976. 1979) [ 

I I I 
First order First order First order 

Kinematical theory Single interband Weak phase object 
transition 

the problems by the so-called 'turning-axes' technique 
(for example, defects). 

Also of great interest is the fact that the present 
description may provide an elegant way of studying the 
symmetry properties of the diffraction process. In fact, 
since any unitary or antiunitary operators leave the 
Hermitian scalar product invariant, the symmetry 
properties of both diffraction and images may be 

derived by studying the commutation properties be- 
tween the evolution operator and the usual symmetry 
operators (Portier & Gratias, 1981). 

The authors wish to thank Professor J. W. Steeds, 
Dr M. Tournarie and Professor J. M. Sanchez for 
many helpful and enlightening discussions during the 
preparation of the manuscript. 
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