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Introduction
The formation of Transmission Electron Microscopy (TEM) images involves complex physical
processes that are characterized and modeled in order to perform computer simulations. There is
no unique set of approximations that allows to model and calculate the numerous sorts of images
that a TEM provides (in a more or less reasonable cpu time).

The approximations, assumed by the modeling process are strongly, dependent on the images to
be simulated (SAED, CBED, LACBED or PED diffraction, HRTEM, Weak Beam, Hologram,
...). In this document we will describe some of them relevant to the simulation of diffraction
patterns and high resolution TEM images.

Prior to perform any calculation the following items (from the electron source to the detector)
must characterized and modeled:

I The electron beam properties.
I The specimen properties1.
I How is the incident electrons scattered by the specimen?
I How does the microscope transfer the scattered electron beam?
I How do we measure the properties of the scattered electron beam (diffraction, image,

hologram)?
1file://localhost/Users/pierrestadelmann/Desktop/HamiltonJune2012/html/Rb2WO9/Rb2WO9.html
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Modeling of TEM operation
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Modeling steps: Incident wave, crystal, electron-matter interaction, Fraunhofer approximation,
image formation.
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Diffraction pattern depends on specimen thickness
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HRTEM image depends on specimen thickness and object defocus
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HREM map to show defocus - thickness dependence
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HREM map does not include the Modulation Transfer Function (MTF) of the detector2.
2See discussion of detector MTF below page 52.
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First modeling decision

The first modeling decision concerns the representation of a plane wave:

I Crystallography and optics:Ψ(~r) = e2iπ~k .~r .

I Quantum mechanics: Ψ(~r) = e i~k .~r .

This choice as consequences for all the future modeling steps, in particular the description of the
transfer function of the microscope and the controversial sign of the objective lens defocus3.

This choice determines also the choice of the phase shift of the transfer function of the objective
lens and of the underfocus parameter4.

3L. Reimer, ”Transmission Electron Microscopy”, Springer-Verlag 1993.
4See discussion on page 9.
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Microscope modeling: Abbe image formation theory

The objective lens is modeled as a thin lens that brings the Fraunhofer diffraction pattern at a
finite distance (i.e. in its back focal plane).
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Paraxial optics: perfect thin lens
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Principal rays of paraxial optics. Reflection (plane wave) making an angle α, where α = 2θB,
corresponds to spatial frequency q.
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Optical Path Length: spherical aberration
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In presence of spherical aberration, the optical path length (OPL’) form Ao to A′i is smaller than
OPL from Ao to Ai . The wavefront at A′i is out-of-phase by5:

e−2πi Cs λ3(~q·~q)2
4

5With our plane wave choice.
Pierre Stadelmann CIME-EPFL CH-1015 Lausanne Switzerland Pierre.Stadelmann@epfl.ch TEM image simulation



Optical Path Length: underfocus
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Underfocus weakens the objective lens, i.e. increases f. As a consequence the OPL from Ao to
A′i is larger:

e2πi ∆f λ(~q·~q)
2
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Optical Path Length: eucentricity
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On the contrary keeping f constant and moving the object by ∆a decreases the OPL.
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Transfer function of the objective lens

The transfer function of the objective lens in the absence of lens current and accelerating voltage
fluctuations (Scherzer defocus). The (111) and (022) reflections of Si are phase shifted by
−π

2 → black atomic columns.

Pierre Stadelmann CIME-EPFL CH-1015 Lausanne Switzerland Pierre.Stadelmann@epfl.ch TEM image simulation



Electron beam properties

1. Energy (E).

2. Energy dispersion or spread (∆E ).

3. Momentum dispersion or angular spread (∆K ).

These properties allow to describe the spatial and temporal coherence of the incident electron
wave which are extremely important in high resolution imaging6.

6K. Ishizuka, ”Contrast Transfer of Crystal Images in TEM”, Ultramicroscopy 5 (1980) 55.
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Constants

c = speed of light in vacuum.
e = electron charge.
E = accelerating voltage (≥ 50kV ).
γ = 1 + e2 E 2

2 m0 c2 (relativistic mass correction).
m0 = rest mass of the electron (≈ 511 keV ).

E [kV ] γ λ [pm] v
c

50 1.098 5.362 0.412
100 1.119 3.706 0.548
200 1.391 2.511 0.695
500 1.978 1.423 0.862

1000 2.957 0.873 0.941
Relativistic mass correction, wavelength and speed of the electron.
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Coherence of the electron beam

Partial spatial and temporal coherence of the electron beam introduce an attenuation of the
transfer of high spatial frequencies.
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Specimen properties

1. Amorphous material or crystalline material.

2. Thin or thick.

3. Orientation (high or low symmetry [uvw]).

You might have to transform the unit cell in order to perform the dynamical calculations7.

A: Si3N4 hexagonal lattice. B: Si3N4 orthorhombic lattice. C: Si3N4 orthorhombic lattice x 2.

7See International Tables for Crystallography (1992) Vol. 1, Chapter 5.
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Atomic form factors

Atomic form factors have been tabulated by many authors:

1. Doyle-Turner and Smith-Burge.

2. E.J. Kirkland.

3. Peng-Ren-Dudarev-Whelan.

4. ...

Take care ASA of heavy atoms aren’t always tabulated properly.
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A extremely useful ASA tabulation including phonon and core loss absorption is due to
Weickenmeier-Kohl8.

8A. Weickenmeier, H. Kohl, Acta Cryst. A 47 (1991) 590.
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Diffraction geometry
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Center of the Ewald sphere (C) and Center of the Laue Circle (CLC), projection of C onto the
zero order Laue zone. All reflections on the circle of radius χ are at exact Bragg condition.
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Typical Bragg angles

At 100 kV , Bragg angles for several reflections of Al are given in the next table.
(hkl) Bragg angle [mrad ] Bragg angle [deg .] (hkl) spacing nm−1

(1,1,1) 7.91 0.453 4.276
(2,0,0) 9.14 0.523 4.938
(2,2,0) 12.92 0.740 6.983
(1,1,3) 15.15 0.868 8.189
(2,2,2) 15.83 0.906 8.553
(4,0,0) 18.28 1.047 9.876

Bragg angles for some Al reflections at 100 kV.

Notice that the Bragg angles are pretty small (of the order a few o) and that consequently the
small angle approximation is quite good.
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Electron-matter interaction

V (r)
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An incident electron of wave vector ~k0 interacts with a solid of scalar potential V (~r). The wave
vector of the scattered electron is ~kq =~k0 +~q where ~q is the momentum transfered by the
solid9.

9Magnetic and spin effects are ignored.
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Approximations: elastic scattering of high energy electrons
Elastic scattering:

I Energy conservation (∆E = 0).
I Momentum transfer (q ≥ 0).
I Scattering of high energy electrons (i.e. electrons accelerated by potential ≥ 50 kV ):

I =⇒ electrons scattered at small angles (few degrees).

I Strong electron-matter interaction (104 times larger X-rays):
I =⇒ very thin crystals only can be imaged.

I =⇒ Relaxed Bragg condition (reciprocal rod - many reflections).

~ki : incident wavevector
~kg : scattered wavevector
~g : reciprocal lattice vector

~sg : deviation from exact Bragg condition

1. Energy conservation: |~kg | = |~ki |.

2. Momentum transfer: ~ki +~g + ~sg = ~kg .
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Bragg law

With energy conservation and momentum transfer (~sg = 0):

|~ki +~g | = |~kg |

k2
i + 2× ki × g × cos(~ki ,~g) + g2 = k2

g

2ki × cos(~ki ,~g) = −g
2ki × cos(90o − θB) = −g

2
λ
× sin(θB) = g =

1
dg

=⇒ Bragg law:
2× dhkl × sin(θB) = λ
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Intensity in the single scattering approximation: kinematic theory

Kinematically the intensity of any reflection (or diffracted spot as observed on a CCD camera) is
proportional to Ihkl :

Ihkl = F ∗hklFhkl

where the structure factor Fhkl is:

Fhkl = ∑
i=atoms

fi(hkl) exp−[2ıπ(hxi+kyi+lzi )] occi DWi(hkl)

⇒ Single scattering approximation only valid for extremely thin crystals.
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Fundamental equation
The fundamental equation of the scattering of an electron by a scalar potential V (~r):

(∆̂ + k2
0)|Φ >= V (~r)|Φ >

The Dirac notation is used is this document10. Observing that the incidents electrons have a
kinetic energy several orders of magnitude larger that the interaction energy, on can write (see
figure page 19):

|Φ >= e ikz z |Ψ >= e ikz ze iπ~χ·~ρ

The electron propagation is thus decomposed into 2 parts:
I A very fast movement along the z direction where the electron has an energy several orders

of magnitude larger than the interaction potential.
I A movement in the (x, y) plane where the kinetic and potential energies are of comparable.

The following equation is obtained11 under the elastic and small angle scattering
approximations:

i d
dz |Ψ(z) >= Ĥ(z)|Ψ(z) >

It is similar to the time dependent Schrödinger equation where time t is replaced by z.
10The notation is provided on page 26.
11See development page 58.
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Notation
I Vector in 3-D:~r = {~ρ, z} = (x , y , z)
I Vector in 2-D: ~ρ = (x , y)

I Wave vector 3-D: ~k = {~χ, kz}
I Momentum 2-D: ~q
I Closure: ∑ |~q ><~q| = 1

I Reciprocal lattice vector: ~g or~h
I Closure reciprocal basis: ∑ |~g ><~g | = 1 or ∑ |~h ><~h| = 1

I Operator: Ô = ∑ oj |j >< j | where the oj and |j > are the eigenvalues12 and
eigenfunctions of Ô.

I Projector on state |j >: |j >< j |

I Plane wave of wave vector ~k (3-D): ψ(~r) = e i~k .~r

I Plane wave of wave vector ~q (2-D): φ(~ρ) = e i~q .~ρ

I Transfer function13 T (~q, ∆z): T (~q, ∆z) = e
−i 2π

[
Cs λ3(~q ·~q)2

4 −∆z λ~q ·~q
2

]
12Eigenvalues are real when operator is hermitic.
13Note that the defocus ∆z is positive for underfocus.
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Initial state and signs

Initial state |χ >:
|χ >= e iπ~χ·~ρ

Fourier transform (3-D):

<~u|~k >=
∫ ∞

−∞
e−i~u .~r ψ(~r)d~r =

∫ ∞

−∞
e−i~u .~re i~k .~rd~r = δ(~k −~u)

Fourier transform (2-D):

<~q|~q′ >=
∫ ∞

−∞
e−i~q .~ρψ(~ρ)d~ρ =

∫ ∞

−∞
e−i~q .~ρe i~q′ .~ρd~ρ = δ(~q′−~q)

Structure factor F~h of a unit cell with N atoms at ~xi , Debye-Waller temperature factore−DW i~h ·~h
4

and site occupancy Oc i :

F~h =
i=N

∑
i=1

f i
~h e−i 2π~h ·~xi e−DW i~h ·~h

4 Oc i
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Other functions and signs

Phase object function O(~ρ) with projected potential Vp(~ρ) (positive):

O(~ρ) = e i σe Vp(~ρ)

Weak phase object approximation WPOA(~ρ):

WPOA(~ρ) = 1 + i σeVp(~ρ)

Fresnel propagator P(~ρ, z):
P(~ρ, z) = e i kz

~ρ ·~ρ
2z
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Evolution operator
It is a postulate of quantum mechanics that the temporal evolution of a system is given by:

|Ψ(t) >= Û(t, t0)|Ψ(t) >= Û(t, t1)Û(t1, 0)|Ψ(t) > t ≥ t1 ≥ t0

Û(t, t) = 1̂
Û(t0, t) = Û†(t, t0)

In our case z replaces t and the evolution of the system from the initial state |Ψ(0) > at z = 0
to the final state |Ψ(z) > at z:

|Ψ(z) >= Û(z , z0)|Ψ(z) >

The evolution operator is the solution of:

i d
dz Û(z , z0) = Ĥ(z)Û(z , z0)

Where Ĥ(z) is the hamiltonian of elastic diffraction:

Ĥ(z) = 1
2kz

(
∑
q
(q2− χ2)|q >< q|+ ∑

q,q′
|q >< q|V (z)|q′ >< q′|

)
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Hamiltonian of elastic diffraction

Ĥ(z) depends on the space variable (x, y) and z in the direction of propagation behaves like the
time parameter of the Schrödinger equation.

The diagonal terms (q2− χ2) Ĥ(z) are the deviations sq from exact Bragg condition. They are
calculated as14:

q2− χ2 = |~χ +~g |2− χ2 = χ2 + 2~χ ·~g + g2− χ2 = 2~χ ·~g + g2

The off-diagonal terms < q|V (z)|q′ > of Ĥ(z) are the 2-D Fourier coefficients of the
scattering potential.

As the diagonal terms increases quadratically with |q|, whereas the off-diagonal terms decrease
to zero for large values of |q|, reciprocal nodes Q far away from the Ewald sphere do not
contribute to diffraction. One can restrict the q basis to vectors such that q2 is not too large
compared to the maximum value of < q|V (z)|q′ >.

14see figure page 19.
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Diffraction: transition probability

Final state |Ψz > of electron after interaction with potential V (~ρ, z):

|Ψz >= Û(z , 0)|Ψ0 >

Transition probability from the initial state |χ > to the final state |q >, ωχ→q(z , 0), is the
module square of < q|Û(z , 0)|χ > (intensity of beam diffracted to |q >).

Intensity diffracted to |q >:

ωχ → q(z , 0) = | < q|Û(z , 0)|χ > |2
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Intensity of diffracted beam |q >

The transition probability from |Ψ(z0) > or initial state |χ > to some final state |q >.

ωχ → q(z , 0) = | < q|Û(z , 0)|χ > |2

|χ>

|q>
z

z=0

z

To calculate the intensity or transition probability ωχ → q(z , 0) we must calculate Û(z , 0)
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Intensity of the wave function

Wave function intensity Ψ(ρ; z) at exit face of crystal slab =⇒ transition probability from initial
state |χ > to final state |ρ >:

ωo → ρ(z , 0) = | < ρ|Û(z , 0)|χ > |2

With a discrete set of |q >:

ωo → ρ(z , 0) = |∑
q
< ρ|q >< q|Û(z , 0)|χ > |2

Where:
I < q|Û(z , 0)|χ > Fourier transform of object wave function.

I ∑q < ρ|q >< q|Û(z , 0)|χ > the Fourier synthesis of the image wave function.
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Intensity in image plane

Intensity observed at point ρ in the image plane is modified by the transfer function of the
microscope T (q′, q) that couples states |q′ > and |q > (matrix T (q′, q)).

Image intensity is given by:

ωo → ρ(z , 0) = |∑
q

∑
q′

< ρ|q′ >< q′|T (q′, q)|q >< q|Û(z , 0)|χ >|2

Fourier components of the wave function in image plane of objective lens are modified by
< q′|T (q′, q)|q > (Abbe theory of image formation).
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Abbe image formation: transfer function

The terms ∑q′ < ρ|q ′ > show that the wave function is obtained by inverse Fourier transform
(Fourier synthesis).

In back focal plane of objective lens Fourier components of image wave function:

< q ′|T (q ′, q)|q >< q|Û(z , 0)|χ >

The microscope introduces a coupling between the diffracted beams when transferred by the
objective lens.
When transfer is linear (for example in WPOA (weak phase object approximation) the transfer
matrix < q′|T (q′, q)|q > is diagonal:

< q′|T (q′, q)|q >= T (q)δ(q′− q)

In this particularly simple case the image intensity is:

ωo → ρ(z , 0) = |∑
q

< ρ|q > T (q) < q|Û(z , 0)|χ > |2

Pierre Stadelmann CIME-EPFL CH-1015 Lausanne Switzerland Pierre.Stadelmann@epfl.ch TEM image simulation



HRTEM modeling
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Some remarks

Finally, let us remark that the symmetry properties of the diffraction patterns and high resolution
images are intrinsically tied to the properties of the transition probabilities ωo → ρ(z , 0) and
ωχ → q(z , 0).

Evolution operator Û =⇒ key to understand not only symmetries, but also contrast of bright
and dark field images of defects.

This systematic approach due to D. Gratias and R. Portier ([1]) unifies all the different methods
of image simulation in transmission electron microscopy.
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Approximations

Figure: From Gratias and Portier [1]
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Two approximations

All approximations are numerically equivalent, but perform best in particular cases.

We will consider only 2 approximations:
I The multislice approximation15.
I The Blochwave method16.

The multislice method performs best when simulating crystalline or amorphous solids of large
unit cell or containing defects while the Bloch-wave method is adapted to the calculation of
crystalline solids of small unit cell and in any [uvw] orientation. The Bloch-wave method has also
several advantages (speed, ease of use) for simulating CBED, LACBED or PED patterns and for
polarity and chirality determination.

15J. Cowley and A.F. Moodie, Proc. Phys. Soc. B70 (1957) 486, 497 and 505.
16H. A. Bethe, Ann. Phys. 87 (1928), 55.
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Multislice method

1
432

propagator

phase object

wavefunction

*

(IFT * FT)

The solid is sliced into thin sub-slices. The incident wave-function is transfered by the first slice
(diffraction) and propagated to the next one. The propagation is done within the Fresnel
approximation, the distance between the slices being 20 - 50 times the wavelength17.

17file://localhost/Users/pierrestadelmann/Desktop/HamiltonJune2012/html/PtOct/b.html
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Multislice algorithm

I Diffractor: transfer by a slice ⇒ multiplication by phase object function (POF (~ρ)).
I Propagator: propagation between slices ⇒ convolution by the Fresnel propagator (is

nowadays performed by FFT followed by a multiplication and an inverse FFT (FT−1,
multiplication, FFT)).
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Diffractor

When only the potential term is conserved in the hamiltonian:

Ĥd =
1

2kz
V (ρ, z)

Ĥd is diagonal on |ρ >.
Ĥd |ρ >=

1
2kz

V (ρ, z)|ρ >

The evolution operator is then given by:

Ûd(z , 0) = e−
i

2kz
∫ z

0 V (ρ,τ)dτ

The wave-function at thickness z is written as:

Ψ(z) = Ûd(z , 0)|0 >= e−
i

2kz
∫ z

0 V (ρ,τ)dτ|0 >

po(ρ) = Ûd(z , 0) is the phase object (PO). The weak phase object approximation (WPOA)
develops PO is Taylor series. Note that in the above equation the projected potential (energy
term) is negative (scattering potential times the electron charge).
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Propagator
When the potential can be neglected (vacuum propagation), the hamiltonian reduces to:

Ĥ0 = − 1
2kz

[
∆̂ + χ2

]
It diagonal on |q >:

Ĥ0|q >=
q2− χ2

2kz
|q >

The evolution operator is then given by:

Û0(z , 0) = e−i Ĥ0z =
∫

e−i q2−χ2
2kz z |q >< q|d 2q

In |ρ > representation, propagation from point ρ1 of the entrance face to point ρ2 of the exit
face of the crystal slab is:

< ρ2|Û0(z , 0)|ρ1 >=
∫

e−i q2−χ2
2kz z < ρ2|q >< q|ρ1 > d 2q

< q|ρ1 >= e−iq ρ2

< ρ2|q >= e iq ρ2

Û0(z , 0) = e−i kz (ρ2 −ρ1)
2

2z
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Example: Pt catalyst

A

K0

B

A: catalyst model (9500 atoms)18. B: HREM image (Jeol 400kV).

18file://localhost/Users/pierrestadelmann/Desktop/HamiltonJune2012/html/pot3D/pot3D.html
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Example multislice: Fe3S4

Figure: Fe3S4 HREM map. Figure: Fe3S4 SAED pattern.
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Bloch wave method

When the scattering potential is periodic, the eigenstates |j > of the propagating electrons are
Bloch waves. The hamiltonian of the system is projected on the eigenstates |j > with
eigenvalues γj (”anpassung” parameter).

Ĥ = ∑ e−iγj |j >< j |

The evolution operator is then given by:

Û(z , 0) = ∑
j

e−iγj z |j >< j |

The wave-function at z developed on plane waves basis |q >:

Ψ(z) = ∑
q

φq(z)|q >

φq(z) =< q|Û(z , 0)|0 >= ∑
j

e−iγj z < q|j >< j |0 >

c∗j0 =< j |0 > and c j
q =< q|j >

where in usual notation c∗j0 and c j
q are the Bloch-wave excitations (component of the initial state

|0 > on |j >) and coefficients (component of reflection |q > on |j >) respectively.
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Bloch wave coefficients c∗j0 and c j
q

The Bloch wave coefficients c∗j0 and c j
q are determined from:

Ĥ |j >= γj |j > ⇒ < q|Ĥ |j >= γj < q|j >

< q| 1
2kz

(−∆̂− χ2 + V )|j >= γj < q|j >

q2− χ2

2kz
< q|j > +∑

q′
< q| V

2kz
|q′ >< q′|j >= γj < q|j >

q2− χ2

2kz
c j

q +
Vq′−q

2kz
c j

q′ = γjc j
q

It is transformed in an homogenous system (in matrix form):[[
g2− χ2

2kz
− λ̂I + V h−g

2kz

]]
[c ] = 0

The eigenvalues γj and eigenvectors [c ] are determined for a limited set of plane wave |gi >. In
practice, the set dimension is increased until the eigenvalues converge. The Bloch waves are
finally given by:

|j (n) >= ∑
i

cn
i |gi >

The Bloch waves (eigenstates) propagate independently in the crystal.
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Example: ZnTe [110]

Zn Te

ZnTe [110]

Te Zn

200

200

1 + 49 reflections. Only 5 Bloch-waves are excited when |χ >= 0.
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Bloch-wave example: LACBED - specimen thickness

Figure: Simulation. Figure: Web site EM centre - Monash university (J.
Etheridge).

Bloch-wave simulation of LACBED pattern19.

19file://localhost/Users/pierrestadelmann/Desktop/HamiltonJune2012/html/Si001/Si001.html
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Bloch-wave example: ZnO polarity

002

.

Thickness [nm]

20
40

60

(200) and (200) CBED disks show different intensity pattern (F200 = 10.86 V, F200 = 10.71
V)20.

20file://localhost/Users/pierrestadelmann/Desktop/HamiltonJune2012/Crystals/ZnO/ZnO.html
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Example: Fe3S4

Figure: Fe3S4 HREM map Bloch-wave method (1 +
436 BW)

Figure: Fe3S4 HREM map multislice method
(256x256).
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Detector MTF: Gatan 1K x 1K CCD
To make quantitative comparison with experimental HRTEM images the MTF of the detector
must be introduced in the simulation.

Si (220)

Figure: At high magnification Si (220) planes
imaged with high contrast.

Si (220)

Figure: At low magnification Si (220) planes
imaged with low contrast.

For quantitative comparison always use highest magnification!
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CCD MTF: high magnification

A

Figure: A: Si [001] simulation.

B

Figure: B: Si [001], simulation + CCD MTF.
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CCD MTF: low magnification

A

Figure: A: Si [001] simulation.

B

Figure: B: Si [001], simulation + CCD MTF.
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Future of HRTEM simulation with the Cs and Cc correction?
Example: CdCu2, visibility of the 3 Cu atomic columns.

2 Cd

3 Cu

2 Cu

HRTEM image simulation conditions
Acc. [kV] Cs [mm] C5[mm] Cc [mm] ∆E [eV ] Z [nm] ∆z [nm]

300 -0.008 30 0.5 0.6 -4.9 1
300 -0.008 30 0.1 0.2 -2.0 1

Dynamical scattering effects are not affected by Cs and/or Cc corrected TEM!
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CdCu2[001]: imaging parameters set 1

Thickness

Defocus

Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.
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CdCu2[001]: imaging parameters set 2
Thickness

Defocus

Improving Cc and ∆E does not affect the visibility of 3 the Cu atomic columns depends on
specimen thickness and defocus.

Visibility of the 3 Cu atomic columns is affected dynamical scattering (1 MeV Cs and Cc
TEM).
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Dynamical theory of elastic scattering of high energy electron
We aim to understand in details multiple elastic scattering of electrons by crystals.

I High energy electron (eE).
I Periodic interaction potential V (~r).
I Time independent flux of incident electrons.

The fundamental equation of electron elastic scattering by a potential Vv [Volt ](positive inside a
crystal) in the approximation of a stationary flux of electrons of a given energy e E is the
Schrödinger equation ([2]):

4Φ(~r) + 2me
h̄2 [E + Vv(~r)]Φ(~r) = 0

With a change of notation its is written as:

[4+ 4π2K 2
i ] Φ(~r) = −4π2Vv(~r) Φ(~r)

Where the wavevector |~Ki | of the incident electrons is given by:

|Ki | =
√

2meE
h

and
m = γ m0
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Schrödinger equation

The Laplacian 4 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is written as: 4ρ +
∂2

∂z2 . As a result, [4+ ...]e2πıkzzΨ(ρ; z)
is given by: [4ρ +

∂2

∂z2 + ...]e2πıkzzΨ(ρ; z).
Performing the z-differentiation:

∂2

∂z2e2πıkzzΨ(ρ; z) = e2πıkzz [−4π2k2
z + 4πıkz

∂

∂z +
∂2

∂z2 ]Ψ(ρ; z)

Inserting the last expression and dropping the term e2πıkz z :

[4ρ + 4π2(K 2
i − k2

z + V (ρ; z)) + 4πıkz
∂

∂z +
∂2

∂z2 ]Ψ(ρ; z) = 0

Since K 2
i = k2

z + χ2:

[4ρ + 4π2χ2 + 4π2V (ρ; z) + 4πıkz
∂

∂z +
∂2

∂z2 ]Ψ(ρ; z) = 0

Rearranging the last equation:

ı
∂Ψ(ρ; z)

∂z = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z) + ∂2

∂z2 ]Ψ(ρ; z)
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Fundamental equation

ı
∂Ψ(ρ; z)

∂z = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z) + ∂2

∂z2 ]Ψ(ρ; z)

The term |∂
2Ψ(ρ;z)

∂z2 | being much smaller than |kz
∂Ψ(ρ;z)

∂z | we drop it (this is equivalent to neglect
backscattering).

Fundamental equation of elastic scattering of high energy mono-kinetic electrons with a
potential within the approximation of small angle scattering:

ı
∂

∂z Ψ(ρ; z) = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z)]Ψ(ρ; z)

Time dependent Schrödinger equation =⇒ solution by many methods of quantum
mechanics!
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Remarks
I The approximations of the fundamental equation are equivalent to assume that the

scattering potential is small compared to the accelerating potential and that kz varies only
slightly with z . It is in fact a quite good approximation, since the mean crystal potential is
of the order of 10− 20 V .

I Electron backscattering is neglected, the electron are moving forwards.
I The fundamental equation is actually equivalent to a 2-dimensional Schrödinger equation

(ρ = {x , y}) where z plays the role of time. The system evolution is causal, from the past
to the future.

Fundamental equation in Hamiltonian form:

ı
∂

∂z Ψ = H ψ

where:
H = − 1

4πkz
[4ρ + 4π2χ2 + 4π2V (ρ; z)] = Ho +

4π2V (ρ; z)
4πkz

A fundamental postulate of quantum mechanics ([3, 4]) says that the evolution operator obeys
the equation:

ı
∂

∂z U(z , 0) = H(ρ; z) U(z , 0)
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Causal evolution operator

U(z , 0): unitary operator (the norm of |Ψ > is conserved), in general not directly integrable
=⇒ approximations.

U(z , 0) can be directly integrated only when H(ρ; z) and ∂
∂z H(ρ; z) commute. In that case the

general solution is [3]:

U(z , 0) = e−ı
∫ z

0 H(τ) dτ

H(ρ; z) and ∂
∂z H(ρ; z) commute when:

I V (ρ; z) does not depend on z, i.e. V (ρ; z) = V (ρ)(perfect crystal).
I V (ρ; z) can be neglected (free space propagation).
I H(ρ; z) is approximated by it potential term (phase object).

Three approximations are available in jems:
I Multislice method.
I Bloch wave method.
I Howie-Whelan column approximation.
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Full jems version

The full jems version will be made available for the hands-on. Bring your laptop21!

21http://cimewww.epfl.ch/people/stadelmann/jemsv3_7624u2012.htm
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