HRTEM Image Simulation

CCEM Summer School
at McMaster University
June 2-6, 2014

Pierre Stadelmann
CIME-EPFL
CH-1015 Lausanne
Switzerland

June 3, 2014

-Why?
-How?

- Methods.
- Applications.

Quantitative simulation?

- Problems.
- Perfect microscopes.
- Aberrations.

Why HRTEM image simulation?

Example: $\mathrm{HR}(\mathrm{S}) \mathrm{TEM} \mathrm{Si} \mathrm{S}_{4} \mathrm{P}$ 63: [001]

$\mathrm{HR}(\mathrm{S}) \mathrm{TEM} \Longrightarrow$ to acquire knowledge on observed material (oriented in particular [uvw] directions):

- Specimen structure..
- Chemical composition.
- Functional properties.

But HR(S)TEM images depend of several adjustable microscope parameters.
For example object defocus affects strongly HRTEM images.

Structure: $\mathrm{Si}_{3} \mathrm{~N}_{4} \mathrm{P}$ 63: $[001$

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland HRTEM Image Simulation

Images: $\mathrm{Si}_{3} \mathrm{~N}_{4} \mathrm{P}$ 63: [001], 10 nm thick, -9 nm defocus

Imaging parameters: Titan 80-300 (300 kV), $C_{s}-0.033 \mathrm{~mm}$

$\mathrm{Si}_{3} \mathrm{~N}_{4} \mathrm{P}$ 63: [001], 10 nm thick, -3 nm defocus

Imaging parameters: Titan 80-300 (300 kV), $C_{s}-0.033 \mathrm{~mm}$

How to do diffraction/image simulation?

Formation of Electron Microscopy diffraction/images involves complex physical processes.

Approximations and models of these physical processes

are required in order to perform computer simulations. Models are based on electron scattering, diffraction, optics, ...

Needed: crystallography, optics, quantum mechanics, ... and computer programming.

Modeling steps: Incident wave (PW), crystal (OP), electron-matter interaction, Fraunhofer approximation, image formation (Abbe theory), ...

Image formation modeling (HRTEM)

Image wave function: $\left|\Psi_{i}\right\rangle$

$$
\left.\left|\Psi_{i}>=\sum_{\text {Fourier synthesis }}^{q^{\prime}}<\rho\right| q^{\prime}\right\rangle \sum_{\text {Objective lens transfer }}^{q}<q^{\prime}\left|T\left(q^{\prime}, q\right)\right| q>\underbrace{\langle q| U(z, 0) \mid \chi>}_{\text {Fourier transform }}
$$

Modeling steps

Prior to perform any calculation the following items (from the electron source to the detector) must characterized and modeled:

- The electron beam properties.
- Convergence.
- Source size.
- Coherence (spatial and temporal).
- The specimen properties ${ }^{1}$.
- How is the incident electrons beam scattered by the specimen?
- How does the microscope transfer the scattered electron beam?
- How do we measure the properties of the scattered electron beam (diffraction, image, hologram)?
- What are the properties of the detection system?

[^0]
Modeling steps

- Object.
- Scattering \& diffraction.
- Image formation:
- HRTEM.
- HRSTEM.
- Image acquisition.

Modeling the object

Evolution operator $U(z, 0)$ defines the object properties

1. Amorphous material or crystalline material.
2. Thin or thick.
3. Orientation (high or low symmetry [uvw]).

You might have to transform the unit cell in order to perform dynamical calculations ${ }^{2}$.

Figure: $\mathrm{Si}_{3} \mathrm{~N}_{4}$ hexagonal lattice.

Figure: $\mathrm{Si}_{3} \mathrm{~N}_{4}$ orthorhombic lattice.

Figure: $\mathrm{Si}_{3} \mathrm{~N}_{4}$ orthorhombic lattice $\times 2$. amorphous carbone film (9600 atoms).

Any model is considered a periodic unit cell independent of its complexity.

[^1]
Atomic scattering amplitude

Figure: Carbon. Red: real part, green: imaginary part, blue: thermal diffuse scattering.

Figure: Gold. Red: real part, green: imaginary part, blue: thermal diffuse scattering.

The TDS (Thermal Diffuse Scattering) at large $s(=\sin (\theta))$ scales as $\approx Z^{1.7}$. It explains HAADF (High Angle Annular Dark Field) atomic column contrast.

Atomic form factors

Atomic form factors have been tabulated by many authors:

1. Doyle-Turner and Smith-Burge.
2. E.J. Kirkland.
3. Peng-Ren-Dudarev-Whelan.
4. ...

Take care ASA of heavy atoms aren't always tabulated properly.

Figure: Doyle-Turner or Smith-Burger.

Figure: E. J. Kirkland.

Figure:
Peng-Ren-Dudarev-Whelan.

A extremely useful ASA tabulation including phonon and core loss absorption is due to Weickenmeier-Kohl ${ }^{3}$.

Atomic form factors

Crystal structure are defined by:

1. $a, b, c, \alpha, \beta, \gamma$ lattice parameters.
2. Space-group or symmetry operators.
3. Atoms positions (Symbol, x, y, z with $0 \leq(x, y, z)<1)$
$>10^{5}$ crystal structures provided by data bases (ICSD, Min. Soc. Ame., Cryst. Open Database)
Useful severs:
www.minsocam.org
www.crystallography.net
www.cryst.ehu.es

ICSD \& AMS: data bases for crystal structures

Scattering \& diffraction

Scattering: electron-matter interaction

An incident electron of wave vector \vec{k}_{0} interacts with a solid of scalar potential $V(\vec{r})$. The wave vector of the scattered electron is $\vec{k}_{q}=\vec{k}_{0}+\vec{q}$ where \vec{q} is the momentum transfered by the solid ${ }^{4}$.

$$
\text { Elastic scattering } \longrightarrow\left\|\vec{k}_{q}\right\|=\left\|\vec{k}_{0}\right\| \text {. }
$$

Diffraction: Bragg law

With energy conservation and momentum transfer $\left(\vec{s}_{g}=0\right)$, i.e. elastic scattering:

$$
\begin{gathered}
\left|\vec{k}_{i}+\vec{g}\right|=\left|\vec{k}_{g}\right| \\
k_{i}^{2}+2 \times k_{i} \times g \times \cos \left(\vec{k}_{i}, \vec{g}\right)+g^{2}=k_{g}^{2} \\
2 k_{i} \times \cos \left(\overrightarrow{k_{i}}, \vec{g}\right)=-g \\
2 k_{i} \times \cos \left(90^{\circ}-\theta_{B}\right)=-g \\
\frac{2}{\lambda} \times \sin \left(\theta_{B}\right)=g=\frac{1}{d_{g}}
\end{gathered}
$$

\Longrightarrow Bragg law:

$$
2 \times d_{h k l} \times \sin \left(\theta_{B}\right)=\lambda
$$

Center of the Ewald sphere (C) and Center of the Laue Circle (CLC), projection of C onto the zero order Laue zone. All reflections on the circle of radius χ are at exact Bragg condition.
Notice that the Bragg angles are pretty small (of the order a few ${ }^{\circ}$) and that consequently the small angle approximation is quite good.

Structure factors

The structure factor gives the scattering strength of (h,k,l) planes.

$$
F_{h k l}=\sum_{i=\text { atomes }} f_{i}\left(s_{h k l}\right) e^{\left(2 \pi \imath\left(h x_{i}+k y_{i}+\mid z_{i}\right)\right)}
$$

where:

1. $f_{i}\left(s_{h k l}\right)$ is the atomic scattering amplitude.
2. $\left(x_{i}, y_{i}, z_{i}\right)$ are the fractional coordinates of atom $i\left(0 \leq x_{i}<1\right)$.
3. $s_{h k l}=\frac{\sin \left(\theta_{B}\right)}{\lambda}=\frac{1}{2 d_{h k l}}$.

In general all reflections allowed by the Bravais lattice are visible:
Simple cubic: ($h k l$) no condition.
1 atom at (0, 0, 0).

$$
\Longrightarrow F_{h k l}=f_{i}\left(s_{h k l}\right)
$$

Body centered cubic: $(h k l): h+k+I=2 n$ 2 atoms at $(0,0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

$$
\Longrightarrow F_{h k l}=f_{i}\left(s_{h k l}\right)\left[1+e^{\pi \imath(h+k+l)}\right]
$$

Face centered cubic: $(h k l)$ all even or odd.
4 atoms at $(0,0,0),\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right)$

$$
\Longrightarrow F_{h k l}=f_{i}\left(s_{h k l}\right)\left[1+e^{\pi l(h+k)}+e^{\pi l(h+l)}+e^{\pi l(k+l)}\right]
$$

Kinematical diffraction: $<q|U(z, 0)| \chi>$

Figure: $\operatorname{Model}\left(G e_{3} N_{4}\right)$

Center of Lave circle : $(0.000,0.000,0.000):$ Z. Tone axis $:[0,0,1]=[0,0,0,1]$

Figure: Kinematical diffraction $\mathrm{Ge}_{3} \mathrm{~N}_{4}$, [001].
$<q|U(z, 0)| \chi>\Longrightarrow$ Fourier transform of object wavefunction
Dynamical scattering (many approaches under small angle approximation and elastic scattering).
Including inelastic scattering more complicated and computer intensive.

Gratias \& Portier: small angle \& elastic scattering approximations

$$
H(z)=\frac{1}{2 K}\left(-\nabla^{2}-\chi^{2}+V(z)\right)=H^{0}+\frac{V(z)}{2 K}
$$

z-independent potential: \dot{V}

Zero-layer approximation
or

Figure: From Gratias and Portier ${ }^{5}$
${ }^{5}$ D. Gratias and R. Portier, Acta Cryst. A39 (1983) 576.

All approximations are numerically equivalent, but perform best in particular cases.
We will consider only 2 approximations:

- The multislice approximation ${ }^{6}$.
- The Bloch-wave method ${ }^{7}$.

The multislice method performs best when simulating crystalline or amorphous solids of large unit cell or containing defects while the Bloch-wave method is adapted to the calculation of crystalline solids of small unit cell and in any [uvw] orientation. The Bloch-wave method has also several advantages (speed, ease of use) for simulating CBED, LACBED or PED patterns and for polarity and chirality determination.

[^2]
Multislice method

The solid is sliced into thin sub-slices. The incident wave-function is transferred by the first slice (diffraction) and propagated to the next one. The propagation is done within the Fresnel approximation, the distance between the slices being 20-50 times the wavelength ${ }^{8}$.

$$
\Psi(i+1)=[\Psi(i) P O(i)] \otimes F P_{i \rightarrow i+1}
$$

[^3]
Multislice algorithm

Can simulate:

- Perfects crystals.
- Defects under the periodic continuation assumption ${ }^{9}$.

2 steps:

- Diffractor: transfer by a slice \Rightarrow multiplication by phase object function $(\operatorname{POF}(\vec{\rho}))$.
- Propagator: propagation between slices \Rightarrow convolution by the Fresnel propagator (is nowadays performed by a FFT followed by a multiplication and an inverse FFT ($F T^{-1}$, multiplication, FFT)).

[^4]
Multislice: periodic continuation ${ }^{11}$

Figure: Model (one unit cell).

Figure: Model with periodic continuation (2 x 2 unit cells).

Example multislice: Pt catalyst

A: catalyst model (9500 atoms) ${ }^{12}$. B: HREM image (Jeol 400kV).

[^5]
Bloch wave method: z-independent potential

When the scattering potential is periodic, the eigenstates $\mid j>$ of the propagating electrons are Bloch waves. The hamiltonian of the system is projected on the eigenstates $\mid j>$ with eigenvalues γ_{j} ("anpassung" parameter).

$$
\widehat{H}=\sum_{j} \gamma_{j}|j><j|
$$

The evolution operator is then given by (since $V=V(\vec{\rho})$):

$$
\widehat{U}(z, 0)=e^{-i \hat{H} z}=\sum_{j} e^{-i \gamma_{j} z}|j><j|
$$

The wave-function at z developed on plane waves basis $\mid q>$:

$$
\begin{gathered}
\Psi(z)=\sum_{q} \phi_{q}(z) \mid q> \\
\phi_{q}(z)=<q|\widehat{U}(z, 0)| 0>=\sum_{j} e^{-i \gamma_{j} z}<q|j><j| 0> \\
c_{0}^{* j}=<j \mid 0>\text { and } c_{q}^{j}=<q \mid j>
\end{gathered}
$$

where in usual notation $c_{0}^{* j}$ and c_{q}^{j} are the Bloch-wave excitations (component of the initial state $\mid 0>$ on $\mid j>$) and coefficients (component of reflection $\mid q>$ on $\mid j>$) respectively.

Bloch wave method: applications

Simulation of:

- SAED (kinematical and dynamical).
- CBED (polarity).
- LACBED (specimen thickness, symmetry).
- PED (Precession Electron Diffraction).
- HRTEM.

Works best for small lattice parameters crystals ${ }^{13}$.

CBED: $\mathrm{ZnTe}[110$

Figure: $\mathrm{ZnTe}[110]$.

Figure: Reflections ($1+$ Figure: Bloch-wave 1 49), $\mid \chi>=0$ (Te 1s).

Figure: Bloch-wave 2
(Zn 1s).

Figure: Bloch-wave 5 (Te-Zn).

Figure: Bloch-wave 7 (Te-Zn).

Figure: Bloch-wave 8 (Te-Zn).

Figure: CBED (ZnTe polarity).

SAED: Diffraction pattern \& specimen thickness

In BFP diffraction pattern depends specimen thickness.

Goodness of dynamical diffraction theories?

LACBED: Si [001]

Figure: LACBED Si [001]: simulation.

Figure: LACBED Si [001]: experimental (Web site EM centre - Monash university, J. Etheridge).

Note that the experimental LACBED pattern is blurred (inelastic scattering and/or MTF of CCD camera?).

Image formation

- Abbe image formation.
- Transfer function.
- Perfect thin lens.
- Aberrations.

Optical system

An optical system produces the image A_{i} of a point source object $A_{o} . A_{o}$ and A_{i} are said to be conjugate. A_{i} is not a point since any optical system is diffraction limited. This limitation is introduced by the entrance and exit pupils of the optical system.

Aberrations of optical systems: how to define them

Some light rays emitted by object point A_{o} do not reach the image at point A_{i}.

Position of $A_{i} \longrightarrow$ intersection of the reference light ray (non deviated) and the image plane.

The image of a point source is a spot whose shape and intensity depend of the quality of the optical system.

Two types of aberrations:

1. Monochromatic.
2. Chromatic (λ dependent).

Pupils

Any optical system can be characterised by an entrance pupil P_{e} and an exit pupil P_{s}. The pupils are the image of the opening aperture $D O$ by the entrance and exit optical subsystems $S O_{e}$ and $S O_{s}$. What are P_{e} and P_{s} for a thin lens?

Monochromatic aberrations

In order to evaluate the monochromatic aberrations one must define a function characteristic of the optical system.

This function will depend on:

1. The selected reference planes.
2. The optical path followed by the light ray.

- Before P_{E} the reference wavefront $\Sigma_{P E}$ is spherical (point source at 0).
- After P_{S} the reference wavefront $\Sigma_{P S}$ is spherical (converges towards I).

For a perfect optical system, both the entrance $\Sigma_{P E}$ and exit $\Sigma_{P S}$ wavefronts are spherical. The Optical Path Length form O to I is independent of the path.

Optical Path Difference (OPD): aberrations

In the presence of aberrations the wavefront Σ_{S}^{\prime} is no more spherical. The Optical Path Difference (distance between the deformed Σ_{S}^{\prime} and spherical wavefront $\left.\Sigma_{S}\right)$ introduces a phase shift $\delta \phi$. With P^{\prime} close to $P=\left(x_{S}, y_{S}\right)$ on reference sphere Σ_{s}, the OPD at $P^{\prime}=\left(\right.$ i.e. OPL from P^{\prime} to P) is given by (Fermat principle):

$$
W\left(x_{s}, y_{s}\right)=n_{i} \overline{P^{\prime} P}
$$

n_{i} refractive index of the medium \longrightarrow phase shift:

$$
\delta \phi=e^{2 \pi l \frac{W\left(x_{s}, y_{s}\right)}{\lambda}}
$$

Transverse geometric aberrations: $\vec{\epsilon}$

The transverse geometric aberrations are proportional to $\frac{d}{d \theta}$ wavefront aberrations ${ }^{14}$:

$$
\begin{aligned}
\epsilon_{x} & =-\frac{f}{n_{i}} \frac{\partial W}{\partial x_{s}} \\
\epsilon_{y} & =-\frac{f}{n_{i}} \frac{\partial W}{\partial y_{s}}
\end{aligned}
$$

f focal length.

The OPD's introduced by all the aberrations of the imaging system are collected in a function $\chi(\vec{u})$ and the phase shift is ${ }^{15}$:

$$
\widetilde{T}(\vec{u})=e^{\imath \chi(\vec{u})}
$$

$\widetilde{T}(\vec{u})$ has been first employed by Abbe in his description of image formation (1866).

[^6]
Paraxial optics: principal rays

Principal rays of paraxial optics. Reflection (plane wave) making an angle α, where $\alpha=2 \theta_{B}$, corresponds to spatial frequency u.

[^7]
Microscope modelling: Abbe image formation theory

Objective lens is modelled as a thin lens that brings Fraunhofer diffraction pattern at finite distance (i.e. in its Back Focal Plane).

Image forming system has 2 properties (Abbe theory):

- Linear.
- Space invariant.

Coherence of illumination:

- Source size (spatial coherence).
- Energy spread (temporal coherence).

Partial coherence (always the case): $\widetilde{T}\left(q^{\prime}, q\right)$: transmission cross-coefficients \Longrightarrow is approximated by a transfer function $\widetilde{T}(\vec{u})$ and several envelope functions (attenuation of a range of spatial frequencies)..

Transfer function $T(\vec{u})$

Two cases:
\rightarrow TEM ($\widetilde{T}(\vec{u})$: Transfer Function):

$$
\begin{aligned}
& \widetilde{\Psi}_{i}(\vec{u})=\widetilde{\Psi}_{o}(\vec{u}) \widetilde{T}(\vec{u}) \\
& \Psi_{i}(\vec{x})=\int \widetilde{\Psi}_{o}(\vec{u}) \widetilde{T}(\vec{u}) e^{2 \pi \vec{u} \cdot \vec{x}} \mathrm{~d} \vec{u}
\end{aligned}
$$

$\rightarrow \operatorname{STEM}(\widetilde{O T F}(\vec{u})=\widetilde{T}(\vec{u}) \otimes \widetilde{T}(-\vec{u})$: Optical Transfer Function):
$I(\vec{x})$
$=\left\langle\Psi_{i}(\vec{x} ; t) \Psi_{i}^{*}(\vec{x} ; t)\right\rangle$
$\Psi_{i}(\vec{x} ; t) \quad=\Psi_{o}(\vec{x} ; t) \otimes T(\vec{x})$
$I(\vec{x}) \quad=\left\langle\left[\Psi_{o}(\vec{x} ; t) \otimes T(\vec{x})\right]\left[\Psi_{o}^{*}(\vec{x} ; t) \otimes T^{*}(\vec{x})\right]\right\rangle$ (\otimes convolution.)
$I(\vec{x}) \quad=\left[T(\vec{x}) T^{*}(\vec{x})\right] \otimes\left\langle\Psi_{o}(\vec{x} ; t) \Psi_{o}^{*}(\vec{x} ; t)\right\rangle \quad(T(\vec{x})$ is time independent.)
$\left\langle\Psi_{o}(\vec{x} ; t) \Psi_{o}^{*}(\vec{x} ; t)\right\rangle=\left|\Psi_{o}(\vec{x})\right|^{2}$
(complete spatial incoherence)
$I(\vec{x}) \quad=\left|\Psi_{o}(\vec{x})\right|^{2} \otimes\left[T(\vec{x}) T^{*}(\vec{x})\right]$
$I(\vec{x}) \quad=I_{0}(\vec{x}) \otimes \operatorname{OTF}(\vec{x})$

Optical Path Length: underfocus

Underfocus weakens the objective lens, i.e. increases f. As a consequence the OPL from A_{o} to A_{i}^{\prime} is larger:

$$
e^{2 \pi i \frac{\Delta f \lambda(\vec{q} \cdot \vec{q})}{2}}
$$

Transfer function $T(\vec{q})$

$$
T(\vec{q})=e^{\chi(\vec{q})}=\cos (\chi(\vec{q}))+i \underbrace{\sin (\chi(\vec{q}))}_{\text {Contrast transfer function }}
$$

$$
\chi(\vec{q})=\pi\left[W_{20} \lambda \vec{q} \cdot \vec{q}+W_{40} \frac{\lambda^{3}(\vec{q} \cdot \vec{q})^{2}}{2}+\ldots\right]
$$

Where:

- W_{20} : defocus (z)
- W40: spherical aberration $\left(C_{s}\right)$

Wavefront aberrations to $6^{\text {th }}$ order (cartesian coordinates)

```
\(\left\{z, \pi\left(u^{2}+v^{2}\right) \lambda\right\}\) (defocus)
\(\{W(1,1), 2 \pi(u \cos (\phi(1,1))+v \sin (\phi(1,1)))\}\)
\(\{W(2,2), \pi \lambda((u-v)(u+v) \cos (2 \phi(2,2))+2 u v \sin (2 \phi(2,2)))\}\)
\(\left\{W(3,1), \frac{2}{3} \pi\left(u^{2}+v^{2}\right) \lambda^{2}(u \cos (\phi(3,1))+v \sin (\phi(3,1)))\right\}\)
\(\left\{W(3,3), \frac{2}{3} \pi \lambda^{2}\left(u\left(u^{2}-3 v^{2}\right) \cos (3 \phi(3,3))-v\left(v^{2}-3 u^{2}\right) \sin (3 \phi(3,3))\right)\right\}\)
\(\left\{W(4,0), \frac{1}{2} \pi\left(u^{2}+v^{2}\right)^{2} \lambda^{3}\right\}\left(3^{\text {rd }}\right.\) order spherical aberration or \(\left.C_{3}\right)\)
\(\left\{W(4,2), \frac{1}{2} \pi\left(u^{2}+v^{2}\right) \lambda^{3}((u-v)(u+v) \cos (2 \phi(4,2))+2 u v \sin (2 \phi(4,2)))\right\}\)
\(\left\{W(4,4), \frac{1}{2} \pi \lambda^{3}\left(\left(u^{4}-6 v^{2} u^{2}+v^{4}\right) \cos (4 \phi(4,4))+4 u(u-v) v(u+v) \sin (4 \phi(4,4))\right)\right\}\)
\(\left\{W(5,1), \frac{2}{5} \pi\left(u^{2}+v^{2}\right)^{2} \lambda^{4}(u \cos (\phi(5,1))+v \sin (\phi(5,1)))\right\}\)
\(\left\{W(5,3), \frac{2}{5} \pi\left(u^{2}+v^{2}\right) \lambda^{4}\left(u\left(u^{2}-3 v^{2}\right) \cos (3 \phi(5,3))-v\left(v^{2}-3 u^{2}\right) \sin (3 \phi(5,3))\right)\right\}\)
\(\left\{W(5,5), \frac{2}{5} \pi \lambda^{4}\left(u\left(u^{4}-10 v^{2} u^{2}+5 v^{4}\right) \cos (5 \phi(5,5))+v\left(5 u^{4}-10 v^{2} u^{2}+v^{4}\right) \sin (5 \phi(5,5))\right)\right\}\)
\(\left\{W(6,0), \frac{1}{3} \pi\left(u^{2}+v^{2}\right)^{3} \lambda^{5}\right\}\left(5^{\text {th }}\right.\) order spherical aberration or \(\left.C_{5}\right)\)
\(\left\{W(6,2), \frac{1}{3} \pi\left(u^{2}+v^{2}\right)^{2} \lambda^{5}((u-v)(u+v) \cos (2 \phi(6,2))+2 u v \sin (2 \phi(6,2)))\right\}\)
\(\left\{W(6,4), \frac{1}{3} \pi \lambda^{5}\left(\left(u^{6}-5 v^{2} u^{4}-5 v^{4} u^{2}+v^{6}\right) \cos (4 \phi(6,4))+4 u v\left(u^{4}-v^{4}\right) \sin (4 \phi(6,4))\right)\right\}\)
\(\left\{W(6,6), \frac{1}{3} \pi \lambda^{5}\left(\left(u^{6}-15 v^{2} u^{4}+15 v^{4} u^{2}-v^{6}\right) \cos (6 \phi(6,6))+2 u v\left(3 u^{4}-10 v^{2} u^{2}+3 v^{4}\right) \sin (6 \phi(6,6))\right)\right\}\)
```

jems describes wavefront aberrations to order 8 .

jems

Contrast transfer function: $\sin (\chi(\vec{q}))$

The transfer function of the objective lens in the absence of lens current and accelerating voltage fluctuations (Scherzer defocus). The (111) and (022) reflections of Si are phase shifted by $-\frac{\pi}{2} \rightarrow$ black atomic columns.

HRTEM image intensity: WPOA

In the Weak Phase Object Approximation under optimum transfer conditions the image intensity $I(\vec{x})$ is:

- positive C_{s} (black atomic columns)

$$
I(\vec{x}) \sim 1-2 \sigma V_{p}(\vec{x})
$$

- negative C_{s} (white atomic columns)

$$
I(\vec{x}) \sim \sigma V_{p}(\vec{x})
$$

Where:

$$
V_{p}(\vec{x}): \text { projected potential }
$$

σ : electron matter interaction constant

HRTEM image depends on specimen thickness and object defocus

Thickness series

Defocus series

Si [001] images map: contrast dependence of defocus \& thickness

Defocus

HREM map does not include the Modulation Transfer Function (MTF) of the detector.

Problems

- Object
- \rightarrow Atomic scattering amplitude below 50 kV ?
- \rightarrow Potential by DFT calculation?
- ...
- HRTEM \rightarrow Phase of diffracted beams evolves with specimen thickness.
- HRTEM \rightarrow MTF of image acquisition system (Stobbs factor?).
- HRTEM / HRSTEM \rightarrow Electron channeling depends on atomic column content.
- HRTEM / HRSTEM \rightarrow Aberrations of optical system.
- HRTEM \rightarrow Inelastic scattering (J.M. Cowley, E.J. Kirkland, D. van Dyck, A. Rosenaurer, K. Ishizuka, Z.L. Wang, H. Rose, H. Mueller, L. Allen, ...).
- HRTEM / HRSTEM \rightarrow Drift, vibration, Johnson-Nyquist noise ${ }^{16}$, ...

[^8]

Note that phase of diffracted beam is $\frac{\pi}{2}$ out-of-phase with respect to transmitted beam.

HRTEM problem: CCD MTF (Gatan MSC $1 \mathrm{~K} \times 1 \mathrm{~K}, 24 \mu \mathrm{~m})$

To make quantitative comparison with experimental HRTEM images the MTF of the detector must be introduced in the simulation.

Figure: At high magnification Si (220) planes imaged with high contrast.

Camera MTF \& PSF

Figure: At low magnification Si (220) planes imaged with low contrast.

For quantitative comparison always use highest possible magnification (or include CCD MTF in simulations)!

CCD MTF: high magnification (900 kx)

Figure: A: Si [001] simulation.
Figure: B: Si [001], simulation + CCD MTF

CCD MTF: low magnification (225 kx)

Figure: A: Si [001] simulation.
Figure: B: Si [001], simulation + CCD MTF.

HRTEM / HRSTEM problem: electron channeling (ZnTe [110])

Figure: ZnTe [110] wave function intensity.
Channeling explains several features of HRTEM and STEM images (i.e. appearance / disappearance of contrast of impurities).

Does C_{s} and C_{C} correction solves all imaging problems?

Example: CdCu_{2}, visibility of the 3 Cu atomic columns.

HRTEM image simulation conditions

Acc. [kV]	$C_{s}[\mathrm{~mm}]$	$C_{5}[\mathrm{~mm}]$	$C_{c}[\mathrm{~mm}]$	$\Delta E[\mathrm{eV}]$	$\mathrm{Z}[\mathrm{nm}]$	$\Delta z[\mathrm{~nm}]$
300	-0.008	30	0.5	0.6	-4.9	1
300	-0.008	30	0.1	0.2	-2.0	1

Dynamical scattering effects are not affected by C_{s} and/or C_{c} corrected TEM!

$\mathrm{CdCu}_{2}[001]$: imaging parameters set 1

RNThigkess

Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.

$C d C u_{2}[001]$: imaging parameters set 2

Improving C_{c} and ΔE does not affect the visibility of 3 the Cu atomic columns. It depends on specimen thickness (and defocus indeed). Visibility of the 3 Cu atomic columns is always affected by dynamical scattering. Only extremely thin specimen ($\leq 10 \mathrm{~nm}$) will allow faithful imaging of crystal projected potential.

HRTEM or STEM HAADF imaging

High Angle Annular Dark Field (HAADF): inelastically scattered electrons.
When simulation is necessary how to simulate images?
Numerous approximations:

- Simple projected + convolution with probe intensity: no channeling effect (Weak Object Approximation).
- Multislice calculation: channeling + inelastic scattering (absorption potential) + convolution with probe intensity.
- Frozen lattice (phonon) approximation: atoms of super-cell displaced out of equilibrium position, probe scanned on imaged area, intensity collected by annular detector.
- Pennycook, Nellist, Ishizuka, Shiojiri, Allen, Wang, Rosenauer, van Dyck, ...

Except the first 2 methods, simulation time expensive (luxury?). Approximations (necessity) may suffice...

HAADF: graphene

> Figure: Proj. pot. approx. Figure: Channeling calculation.

Figure: Frozen lattice 5 conf. Figure: Frozen lattice 10 conf.

Figure: Graphene with Si in 6 C ring, Si substitutional and 2 C column.

Graphene HAADF (100 kV, $70-150 \mathrm{mrad})$

Figure: Frozen lattice ($\sim 400 \mathrm{~s}$).
Figure: Channeling ($\sim 2 \mathrm{~s}$).
One Si shows more contrast than 2 C atoms $\left(\mathrm{i} \sim Z^{2}\right): 14^{2}$ compared to $\sim 2 \times 6^{2}$.

Graphene HRTEM $\left(100 \mathrm{kV}, C_{s}-0.033 \mathrm{~mm}\right)$

Figure: Weak phase object app., $C_{c}=0.5 \mathrm{~mm}$

Figure: Multislice, $C_{s}=-0.033 \mathrm{~mm}, C_{c}=0$, no thermal magnetic noise.

HRTEM does not display the strong contrast difference between one Si and two C as given by HAADF.

Quantitative HR(S)TEM

Image simulation necessary for quantitative work ${ }^{17}$.

- Exit wave function recovery using focal series reconstruction.
- Transport of intensity equation.

But... can also be used for teaching or planing HRTEM/HRSTEM observations.

HRTEM / HRSTEM problem: aberrations of optical system

Reaching 0.05 nm resolution sets very strong conditions on aberrations correction.

Figure: Aberration figure of $C_{34}(0.5 \mu \mathrm{~m})$, phase jump at $\frac{\pi}{4}$.

Figure: Optical Transfer Function.

Note that Optical Transfer Function (HRSTEM) transfers higher spatial frequencies than Ccoherent Transfer Function (HRTEM).

HAADF: graphene

Figure: Probe affected by 2 fold astigmatism.

Figure: Probe affected by 3 fold astigmatism
 by 3 fold astigmatism.

Figure: Probe affected by coma.

Figure: HAADF multislice calculation (simple).

Figure: Frozen phonons 5 configurations.

Figure: HAADF
projected potential approximation.

Figure: Corrected probe (best defocus).

Figure: Frozen phonons 10 configurations.

Appendix 1: Dynamical theory of elastic scattering of high energy

electron

We aim to understand in details multiple elastic scattering of electrons by crystals.

- High energy electron (eE).
- Periodic interaction potential $V(\vec{r})$.
- Time independent flux of incident electrons.

The fundamental equation of electron elastic scattering by a potential $V_{v}[$ Volt $]$ (positive inside a crystal) in the approximation of a stationary flux of electrons of a given energy $e E$ is the Schrödinger equation ([?]):

$$
\triangle \Phi(\vec{r})+\frac{2 m e}{\hbar^{2}}\left[E+V_{v}(\vec{r})\right] \Phi(\vec{r})=0
$$

With a change of notation its is written as:

$$
\left[\triangle+4 \pi^{2} K_{i}^{2}\right] \Phi(\vec{r})=-4 \pi^{2} V_{v}(\vec{r}) \Phi(\vec{r})
$$

Where the wavevector $\left|\vec{K}_{i}\right|$ of the incident electrons is given by:

$$
\left|K_{i}\right|=\frac{\sqrt{2 m e E}}{h}
$$

and

$$
m=\gamma m_{0}
$$

Schrödinger equation

The Laplacian $\triangle=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is written as: $\triangle_{\rho}+\frac{\partial^{2}}{\partial z^{2}}$. As a result, $[\triangle+\ldots] e^{2 \pi \imath k_{z} z} \Psi(\rho ; z)$ is given by: $\left[\triangle_{\rho}+\frac{\partial^{2}}{\partial z^{2}}+\ldots\right] e^{2 \pi i k_{z} z} \Psi(\rho ; z)$.
Performing the z-differentiation:

$$
\frac{\partial^{2}}{\partial z^{2}} e^{2 \pi i k_{z} z} \Psi(\rho ; z)=e^{2 \pi \imath k_{z} z}\left[-4 \pi^{2} k_{z}^{2}+4 \pi \imath k_{z} \frac{\partial}{\partial z}+\frac{\partial^{2}}{\partial z^{2}}\right] \Psi(\rho ; z)
$$

Inserting the last expression and dropping the term $e^{2 \pi i k_{z} z}$:

$$
\left[\triangle_{\rho}+4 \pi^{2}\left(K_{i}^{2}-k_{z}^{2}+V(\rho ; z)\right)+4 \pi \imath k_{z} \frac{\partial}{\partial z}+\frac{\partial^{2}}{\partial z^{2}}\right] \Psi(\rho ; z)=0
$$

Since $K_{i}^{2}=k_{z}^{2}+\chi^{2}$:

$$
\left[\triangle_{\rho}+4 \pi^{2} \chi^{2}+4 \pi^{2} V(\rho ; z)+4 \pi i k_{z} \frac{\partial}{\partial z}+\frac{\partial^{2}}{\partial z^{2}}\right] \Psi(\rho ; z)=0
$$

Rearranging the last equation:

$$
\imath \frac{\partial \Psi(\rho ; z)}{\partial z}=-\frac{1}{4 \pi k_{z}}\left[\triangle_{\rho}+4 \pi^{2} \chi^{2}+4 \pi^{2} V(\rho ; z)+\frac{\partial^{2}}{\partial z^{2}}\right] \Psi(\rho ; z)
$$

Fundamental equation

$$
\imath \frac{\partial \Psi(\rho ; z)}{\partial z}=-\frac{1}{4 \pi k_{z}}\left[\triangle_{\rho}+4 \pi^{2} \chi^{2}+4 \pi^{2} V(\rho ; z)+\frac{\partial^{2}}{\partial z^{2}}\right] \Psi(\rho ; z)
$$

The term $\left|\frac{\partial^{2} \Psi(\rho ; z)}{\partial z^{2}}\right|$ being much smaller than $\left|k_{z} \frac{\partial \Psi(\rho ; z)}{\partial z}\right|$ we drop it (this is equivalent to neglect backscattering).
Fundamental equation of elastic scattering of high energy mono-kinetic electrons with a potential within the approximation of small angle scattering:

$$
\imath \frac{\partial}{\partial z} \Psi(\rho ; z)=-\frac{1}{4 \pi k_{z}}\left[\triangle_{\rho}+4 \pi^{2} \chi^{2}+4 \pi^{2} V(\rho ; z)\right] \Psi(\rho ; z)
$$

Time dependent Schrödinger equation \Longrightarrow solution by many methods of quantum mechanics!

- The approximations of the fundamental equation are equivalent to assume that the scattering potential is small compared to the accelerating potential and that k_{z} varies only slightly with z. It is in fact a quite good approximation, since the mean crystal potential is of the order of $10-20 \mathrm{~V}$.
- Electron backscattering is neglected, the electron are moving forwards.
- The fundamental equation is actually equivalent to a 2-dimensional Schrödinger equation ($\rho=\{x, y\}$) where z plays the role of time. The system evolution is causal, from the past to the future.

Fundamental equation in Hamiltonian form:

$$
\imath \frac{\partial}{\partial z} \Psi=H \psi
$$

where:

$$
H=-\frac{1}{4 \pi k_{z}}\left[\triangle_{\rho}+4 \pi^{2} \chi^{2}+4 \pi^{2} V(\rho ; z)\right]=H_{o}+\frac{4 \pi^{2} V(\rho ; z)}{4 \pi k_{z}}
$$

A fundamental postulate of quantum mechanics ([?, ?]) says that the evolution operator obeys the equation:

$$
\imath \frac{\partial}{\partial z} U(z, 0)=H(\rho ; z) U(z, 0)
$$

$U(z, 0)$: unitary operator (the norm of $\mid \Psi>$ is conserved), in general not directly integrable \Longrightarrow approximations.
$U(z, 0)$ can be directly integrated only when $H(\rho ; z)$ and $\frac{\partial}{\partial z} H(\rho ; z)$ commute. In that case the general solution is [?]:

$$
U(z, 0)=e^{-\imath \int_{0}^{z} H(\tau) d \tau}
$$

$H(\rho ; z)$ and $\frac{\partial}{\partial z} H(\rho ; z)$ commute when:

- $V(\rho ; z)$ does not depend on z, i.e. $V(\rho ; z)=V(\rho)$ (perfect crystal).
- $V(\rho ; z)$ can be neglected (free space propagation).
- $H(\rho ; z)$ is approximated by it potential term (phase object).

Three approximations are available in jems:

- Multislice method.
- Bloch wave method.
- Howie-Whelan column approximation.

[^0]: ${ }^{1}$ file://localhost/Applications/jemsMacOSX/html/Rb2W09/Rb2W09.html

[^1]: ${ }^{2}$ See International Tables for Crystallography (1992) Vol. 1, Chapter 5.

[^2]: ${ }^{6}$ J. Cowley and A.F. Moodie, Proc. Phys. Soc. B70 (1957) 486, 497 and 505.
 ${ }^{7}$ H. A. Bethe, Ann. Phys. 87 (1928), 55.

[^3]: ${ }^{8}$ file://localhost/Applications/jemsMacOSX/html/PtOct/a.html

[^4]: ${ }^{9}$ file://localhost/Applications/jemsMacOSX/html/PtOct/b.html
 ${ }^{10}$ K. Ishizuka, Acta Cryst. A33 (1977) 740-749.

[^5]: ${ }^{12}$ file://localhost/Applications/jemsMacOSX/html/pot3D/pot3D.html

[^6]: ${ }^{14} P\left(x_{s}, y_{s}\right)$ on the spherical reference wavefront can be characterised by the radial angle θ.
 ${ }^{15}$ The angle θ corresponds (through Bragg law) to a spatial frequency \vec{u}, i.e. a distance in the back focal plane.

[^7]: Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland
 HRTEM Image Simulation

[^8]: ${ }^{16}$ S. Uhlemann, H. Mueller, P. Hartel, J. Zach \& M. Haider, Phys. Rev. Lett. 111 (2013) 046101.

