HRTEM Image Simulation

Winter School on High Resolution Electron Microscopy at Arizona State University January 6 -10, 2014

> Pierre Stadelmann CIME-EPFL CH-1015 Lausanne Switzerland

December 18, 2013

- ► Why?
- ► How?
 - Methods.
 - Applications.

Quantitative simulation?

- Problems.
- Perfect microscopes.

Why HRTEM image simulation?

 $HR(S)TEM \implies$ to acquire knowledge on observed material (oriented in particular [uvw] directions):

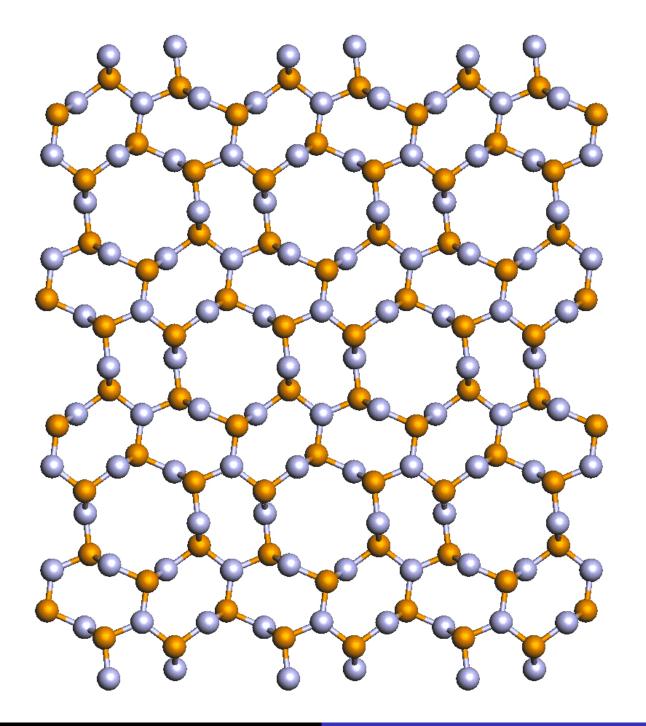
- Specimen structure..
- Chemical composition.
- Functional properties.

• • • •

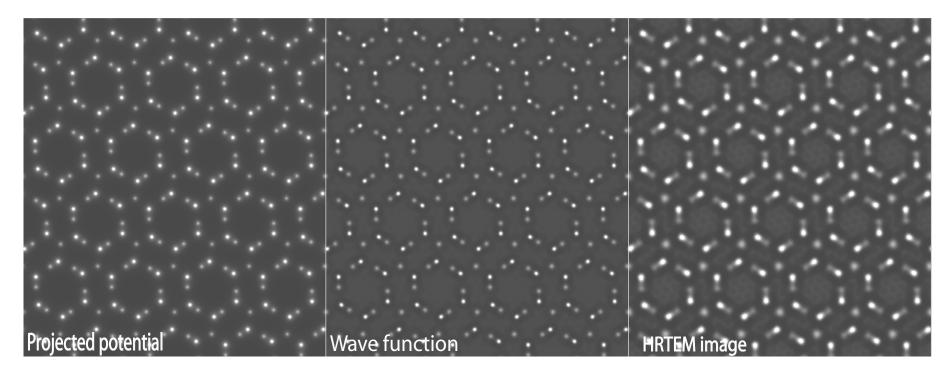
But HR(S)TEM images depend of several adjustable microscope parameters.

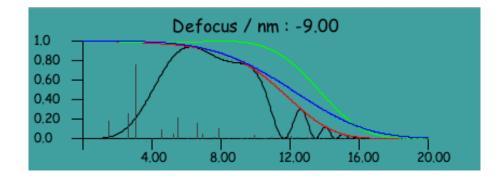
For example object defocus affects strongly HRTEM images.

Structure: Si₃N₄ P 63: [001]



Images: Si_3N_4 P 63: [001], 10 nm thick, -9 nm defocus

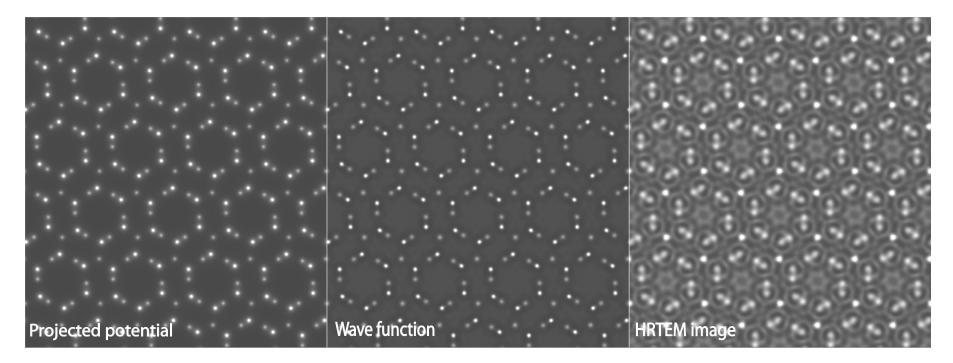


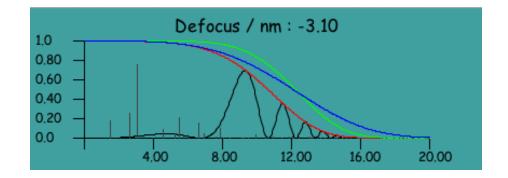


Imaging parameters: Titan 80-300 (300 kV), C_s -0.033 mm

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland HRTEM Image Simulation

*Si*₃*N*₄ P 63: [001], 10 nm thick, -3 nm defocus





Imaging parameters: Titan 80-300 (300 kV), C_s -0.033 mm

How to do diffraction/image simulation?

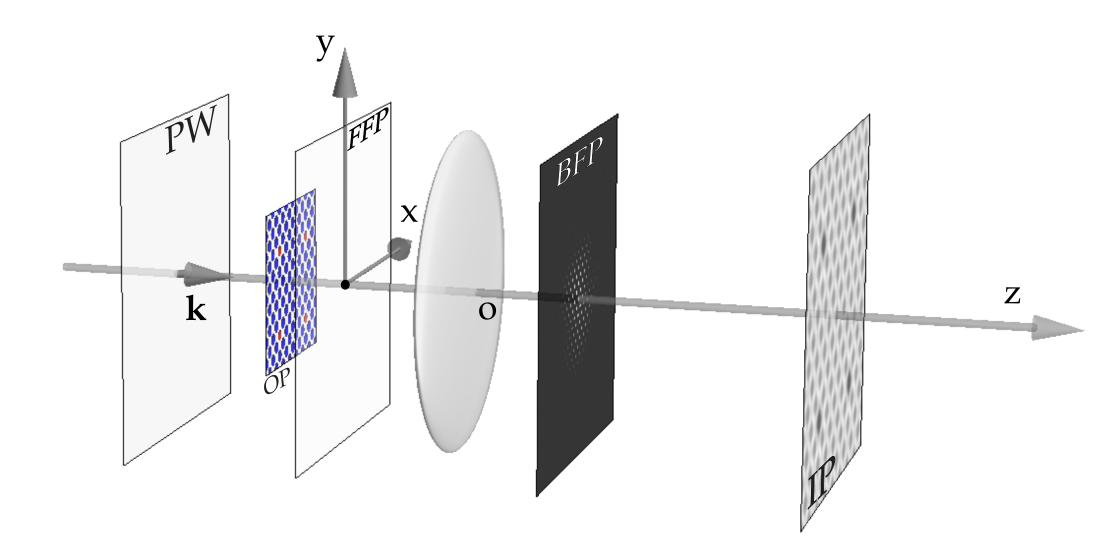
Formation of Electron Microscopy diffraction/images involves complex physical processes.

Approximations and models of these physical processes

are required in order to perform computer simulations. Models are based on electron scattering, diffraction, optics, ...

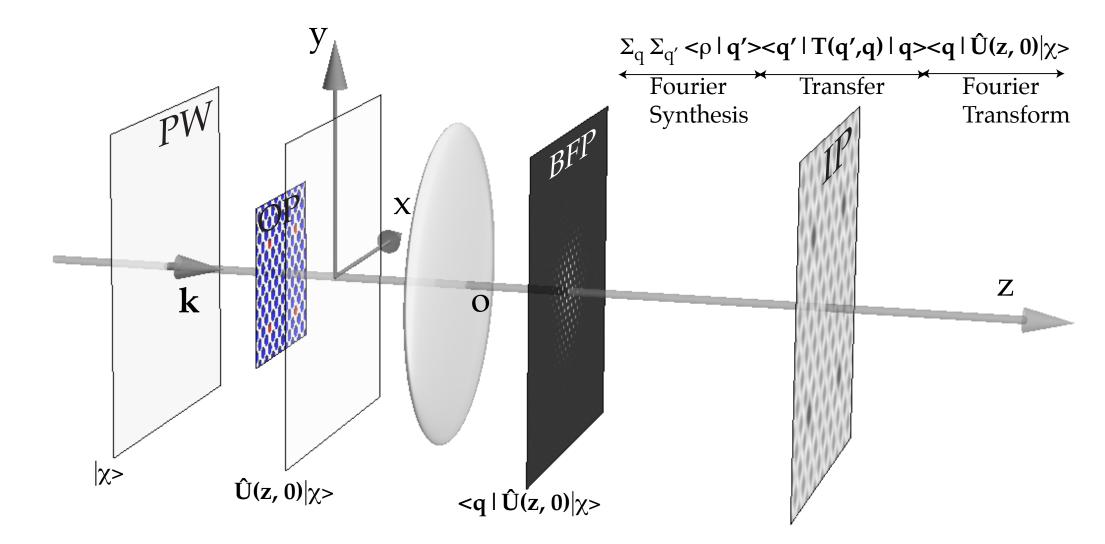
Needed: crystallography, optics, quantum mechanics, ... and computer programming.

TEM (very) simplified model

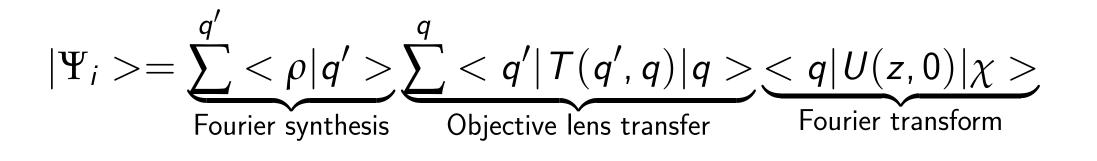


Modeling steps: Incident wave (PW), crystal (OP), electron-matter interaction, Fraunhofer approximation, image formation (Abbe theory), ...

Image formation modeling (HRTEM)



$|\chi > \implies$ incident wave function



Prior to perform any calculation the following items (from the electron source to the detector) must characterized and modeled:

- ► The electron beam properties.
- ► The specimen properties¹.
- How is the incident electrons beam scattered by the specimen?
- ► How does the microscope transfer the scattered electron beam?
- How do we measure the properties of the scattered electron beam (diffraction, image, hologram)?
- What are the properties of the detection system?

¹file://localhost/Applications/jemsMacOSX/html/Rb2WO9/Rb2WO9.html

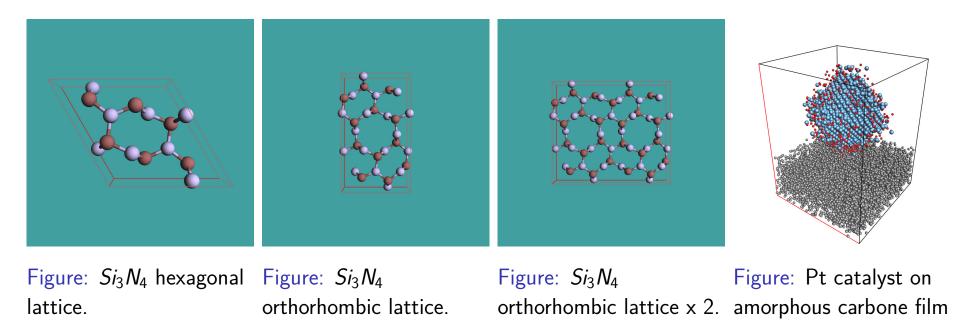
- Object.
- Scattering & diffraction.
- Image formation:
 - ► HRTEM.
 - ► HRSTEM.
- Image acquisition.

Modeling the object

Evolution operator U (z, 0) defines the object properties

- 1. Amorphous material or crystalline material.
- 2. Thin or thick.
- 3. Orientation (high or low symmetry [uvw]).

You might have to transform the unit cell in order to perform dynamical calculations².



Any model is considered a periodic unit cell independent of its complexity.

(9600 atoms).

²See International Tables for Crystallography (1992) Vol. 1, Chapter 5.

Atomic scattering amplitude

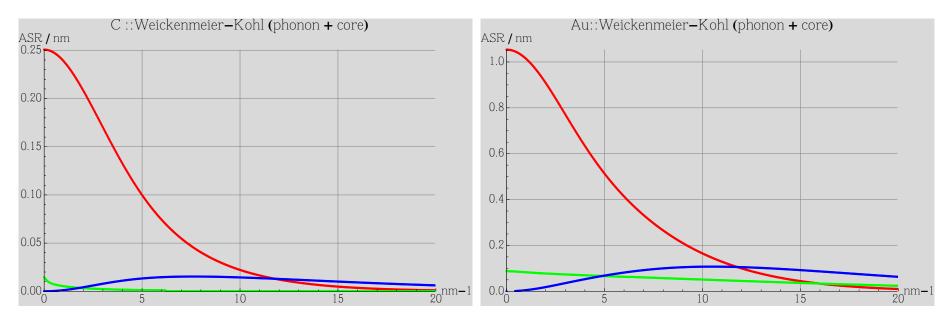


Figure: Carbon. Red: real part, green: imaginary part, blue: thermal diffuse scattering.

Figure: Gold. Red: real part, green: imaginary part, blue: thermal diffuse scattering.

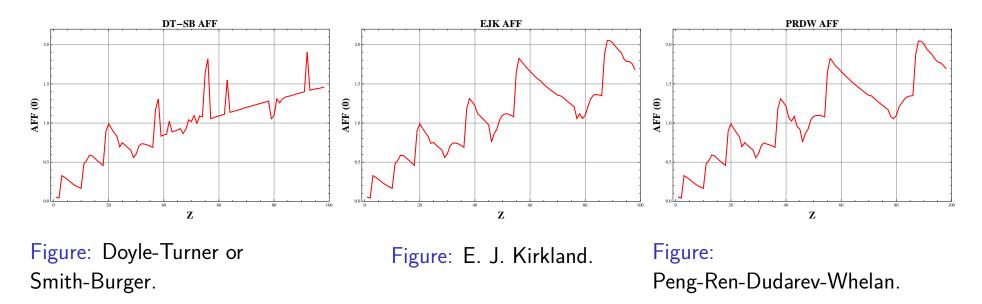
The TDS (Thermal Diffuse Scattering) at large s (=sin(θ)) scales as $\approx Z^{1.7}$. It explains HAADF (High Angle Annular Dark Field) atomic column contrast.

Atomic form factors have been tabulated by many authors:

- 1. Doyle-Turner and Smith-Burge.
- 2. E.J. Kirkland.
- 3. Peng-Ren-Dudarev-Whelan.

4. ...

Take care ASA of heavy atoms aren't always tabulated properly.



A extremely useful ASA tabulation including phonon and core loss absorption is due to Weickenmeier-Kohl³.

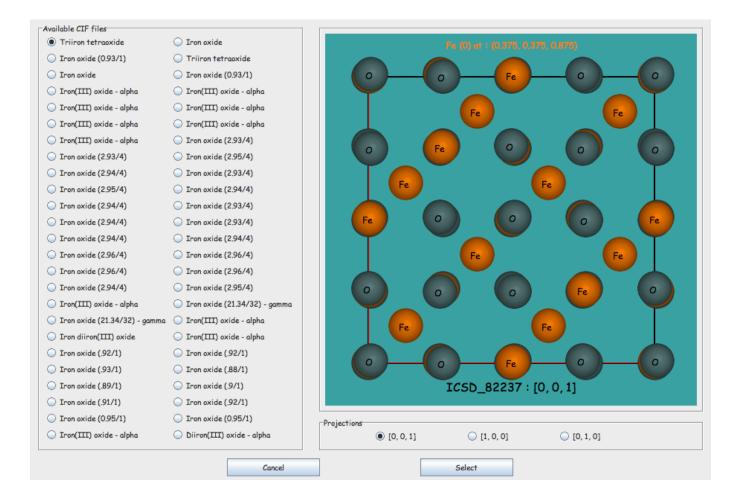
³A. Weickenmeier, H. Kohl, Acta Cryst. A 47 (1991) 590.

Crystal structure are defined by:

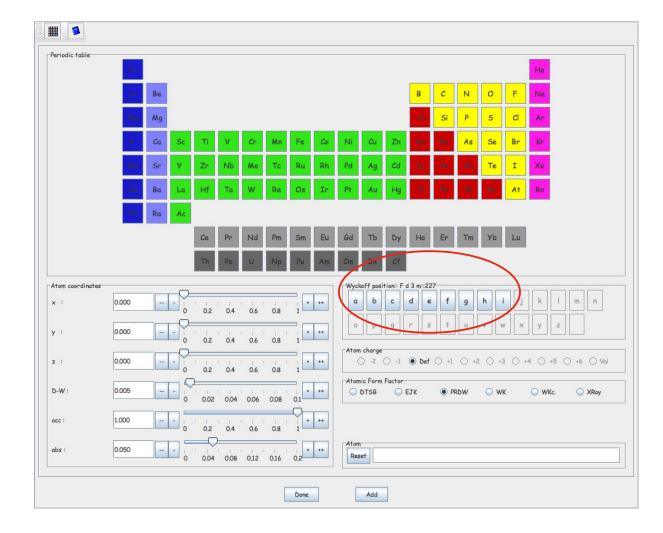
- 1. a, b, c, α , β , γ lattice parameters.
- 2. Space-group or symmetry operators.
- 3. Atoms positions (Symbol, x, y, z with 0 \leqq (x, y, z) \lneq 1)

> 10⁵ crystal structures provided by data bases (ICSD, Min. Soc. Ame., Cryst. Open Database) Useful severs: www.minsocam.org www.crystallography.net www.cryst.ehu.es

ICSD & AMS: data bases for crystal structures



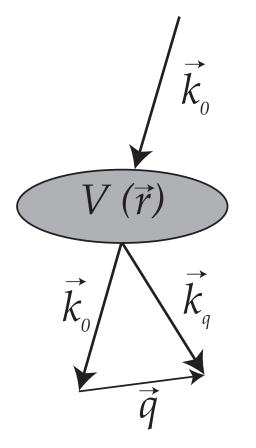
Atom editor



Triclinic Monoclin	c Orthorhombic	Tetragonal	Trigonal H	exagonal Cubic		Triclinic	Monoclinic	Orthorh	nombic	"etragonal	Trigono	ıl Hexagon	al Cubic		
Conventional space-gr			Convertional space-groups (A* indicates commerce setting)												
Orthorhombic space	groups (a * indicates P 2 2 21	centric setting)-	O P 21 21 21	C 2 2 21	Q C222		P 2 2 2		17 P 2 2 2		0 18	P 21 21 2	- 0:	19 P 21 21 21	Ţ
○ F222	0 1222	O I 21 21 21	Pmm 2	Pm c 21	O Pcc2	0 20	C 2 2 21		21 C 2 2 2			F222		23 1222	-
O Pma2	Pca21	O Pnc2	O Pm n 21	O Pba2	O Pna 21		1 21 21 21		25 Pmm		1 -	P m c 21		27 Pcc2	
O Pnn2	○ C m m 2	○ C m c 21	O Ccc2	○ A m m 2	○ A em 2										
🔾 Ama2	⊖ Aea2	○ Fmm 2	◯ Fdd2	🔾 I m m 2	⊖ Iba2		Pma2		29 P c a 2	•	0 30	Pnc2		31 Pmn 21	
◯ Ima2	O P m m m	○ *Pnnn	O Pccm	🔵 *P b a n	O Pmma	○ 32	Pba2	• • •	33 P n a 2	L 🔻	34	Pnn2	• •	35 Cmm 2	
O Pnna	O Pmna	O Pcca	O Pbam	O Pccn	O Pbcm	36	C m c 21	• • •	37 Ccc2	-	38	A m m 2	• •	39 A e m 2	-
O Pnnm	⊖ *P m m n	O Pbcn	O Pbca	🔾 Pnma	○ Cm cm	0 40	Ama 2	- 0 ·	41 Aea2	-	0 42	Fmm2	• •	43 F d d 2	-
⊖ Cmce	_ C m m m	🔾 Cccm	○ Cmme	⊖ *Ccce	○ Fmmm	0 44	Imm 2	- 0	45 I b a 2	-	0 46	Ima2	- 0	47 P m m m	-
○ *F d d d	○ Immm	🔘 Ibam	🔾 Ibca	🔘 Imma		0 48	*Pnnn	-0	49 P c c m	-	0 50	*P b a n	- 0	51 Pmma	-
Orthorhombic space-groups (alternate non-centric setting)							Pnna		53 Pm no	-	0 54	Pcca		55 Pbam	-
🔾 Pnnn 🔾 Pban 🔾 Pmmn 🔾 Ccce 🔾 Fddd							Pccn		57 Pbcm	-	0 58	Pnnm		59 *P m m n	-
Orthorhombic lattic	e parameters		¬				Pbcn		61 Pbca		1	Pnma		53 Cm cm	-
a/nm	0.496		· · · · · · · · · · · · · · · · · · ·	12 16	+ ++		Cmce		65 C m m		1	Cccm		57 Cmme	
b / nm	0.496		4 8	12 16	20 + ++	0 68	*Ccce	•	69 Fmm	m 🔽	_] () 70	*Fddd	••	71 Immm	•
c/nm	0.798		7			0 72	Ibam	- 01	73 Ibca	-	0 74	Imma	-		
C / mi	Orthor	Orthorhombic space-groups (alternate non-centric setting)													
Equivalent reflection							0	48 Pnnn	-	○ 50 РЬ	an	▼ ○ 59	Pmmn	-	
Equivalent Perfection		⊖ 68 Ccce ▼ ○ 70 Fddd ▼													
	OK								ОК			Cancel]		

Scattering & diffraction

Scattering: electron-matter interaction



An incident electron of wave vector \vec{k}_0 interacts with a solid of scalar potential $V(\vec{r})$. The wave vector of the scattered electron is $\vec{k}_q = \vec{k}_0 + \vec{q}$ where \vec{q} is the momentum transferred by the solid⁴.

Elastic scattering $\longrightarrow ||\vec{k}_q|| = ||\vec{k}_0||.$

⁴Magnetic and spin effects are ignored.

X-Ray diffraction: Bragg law

With energy conservation and momentum transfer $(\vec{s_g} = 0)$:

$$|\vec{k}_i + \vec{g}| = |\vec{k}_g|$$

$$k_i^2 + 2 \times k_i \times g \times \cos(\vec{k}_i, \vec{g}) + g^2 = k_g^2$$

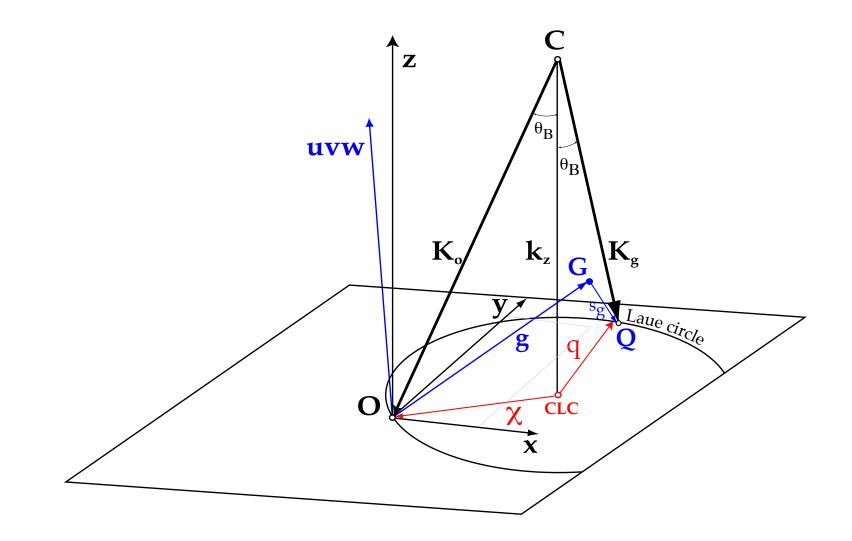
$$2k_i \times \cos(\vec{k}_i, \vec{g}) = -g$$

$$2k_i \times \cos(90^\circ - \theta_B) = -g$$

$$\frac{2}{\lambda} \times \sin(\theta_B) = g = \frac{1}{d_g}$$

 \implies Bragg law:

 $2 \times d_{hkl} \times \sin(\theta_B) = \lambda$



Center of the Ewald sphere (C) and Center of the Laue Circle (CLC), projection of C onto the zero order Laue zone. All reflections on the circle of radius χ are at exact Bragg condition. Notice that the Bragg angles are pretty small (of the order a few °) and that consequently the small angle approximation is quite good.

The structure factor gives the scattering *strength* of (h,k,l) planes.

$$F_{hkl} = \sum_{i=atomes} f_i(s_{hkl}) e^{(2\pi i (hx_i + ky_i + lz_i))}$$

where:

1.
$$f_i(s_{hkl})$$
 is the atomic scattering amplitude.
2. (x_i, y_i, z_i) are the fractional coordinates of atom i ($0 \le x_i < 1$).
3. $s_{hkl} = \frac{sin(\theta_B)}{\lambda} = \frac{1}{2d_{hkl}}$.

In general all reflections allowed by the Bravais lattice are visible: **Simple cubic**: (hkl) no condition. 1 atom at (0, 0, 0).

$$\implies$$
 $F_{hkl} = f_i(s_{hkl})$

Body centered cubic: (hkl) : h + k + l = 2n2 atoms at (0,0,0) and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.

$$\implies F_{hkl} = f_i(s_{hkl}) \left[1 + e^{\pi i (h+k+l)} \right]$$

Face centered cubic: (hkl) all even or odd. 4 atoms at (0, 0, 0), $(0, \frac{1}{2}, \frac{1}{2})$, $(\frac{1}{2}, 0, \frac{1}{2})$, $(\frac{1}{2}, \frac{1}{2}, 0)$

$$\implies F_{hkl} = f_i(s_{hkl}) \left[1 + e^{\pi i (h+k)} + e^{\pi i (h+l)} + e^{\pi i (k+l)} \right]$$

Kinematical diffraction: $< q | U(0,0) | \chi >$

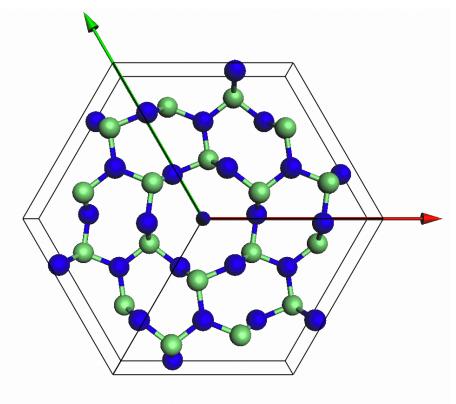


Figure: Model (Ge_3N_4 .

of Laue circle : (0.000, 0.000, 0.000)::Zone axis : [0, 0, 1]=[0, 0, 0, 1 Tilt angle / deg. : 0.00 10 nm-Ge3N4_P63m (1776 reflections) AV/kV:300.00, CL/mm:3049, ZA:[0, 0, 1]=[0, 0, 0, 0, 1], FN:[0, 0, 1]=[0, 0, 0, 1]

Figure: Kinematica diffraction *Ge*₃*N*₄, [001].

$\langle q | U(z,0) | \chi \rangle \implies$ Fourier transform of object wavefunction Dynamical scattering (many approaches under small angle approximation and elastic scattering).

Gratias & Portier: small angle & elastic scattering approximations

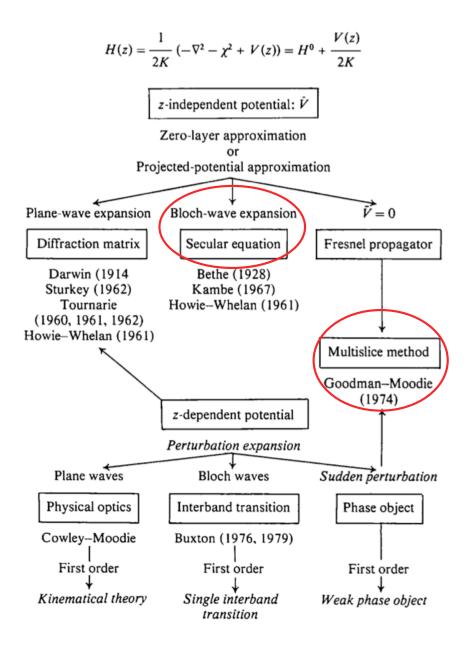


Figure: From Gratias and Portier ⁵

⁵D. Gratias and R. Portier, Acta Cryst. **A39** (1983) 576.

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland HRTEM Image Simulation

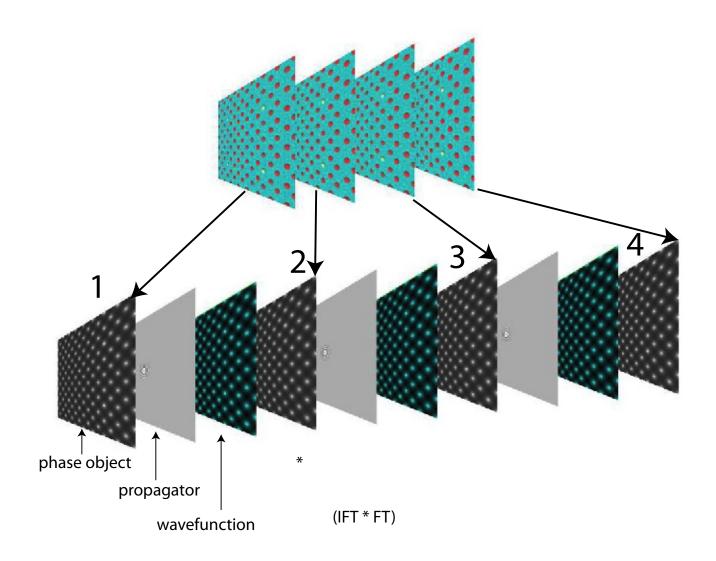
All approximations are numerically equivalent, but perform best in particular cases. We will consider only 2 approximations:

- ► The multislice approximation⁶.
- ► The Bloch-wave method⁷.

The multislice method performs best when simulating crystalline or amorphous solids of large unit cell or containing defects while the Bloch-wave method is adapted to the calculation of crystalline solids of small unit cell and in any [uvw] orientation. The Bloch-wave method has also several advantages (speed, ease of use) for simulating CBED, LACBED or PED patterns and for polarity and chirality determination.

⁶J. Cowley and A.F. Moodie, Proc. Phys. Soc. B70 (1957) 486, 497 and 505.

⁷H. A. Bethe, Ann. Phys. 87 (1928), 55.



The solid is sliced into thin sub-slices. The incident wave-function is transferred by the first slice (diffraction) and propagated to the next one. The propagation is done within the Fresnel approximation, the distance between the slices being 20 - 50 times the wavelength⁸.

⁸file://localhost/Applications/jemsMacOSX/html/PtOct/a.html

Can simulate:

- Perfects crystals.
- Defects under the periodic continuation assumption.

2 steps:

- Diffractor: transfer by a slice \Rightarrow multiplication by phase object function ($POF(\vec{\rho})$).
- ▶ Propagator: propagation between slices ⇒ convolution by the Fresnel propagator (is nowadays performed by a FFT followed by a multiplication and an inverse FFT (*FT*⁻¹, multiplication, FFT)).

⁹K. Ishizuka, Acta Cryst. A33 (1977) 740-749.

Multislice: periodic continuation¹⁰

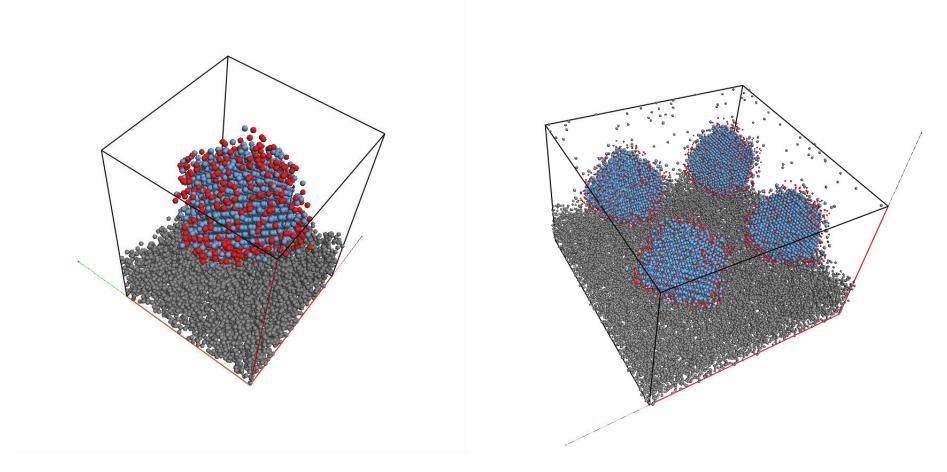
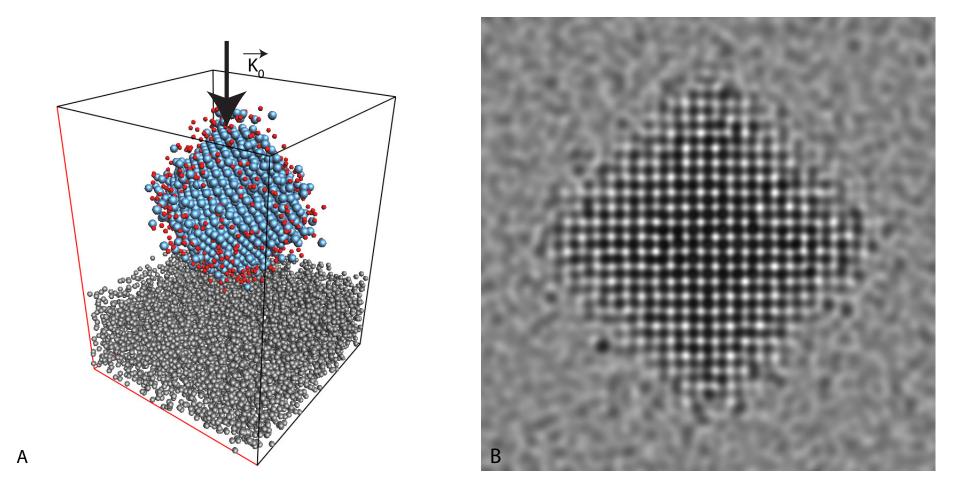


Figure: Model (one unit cell).

Figure: Model with periodic continuation $(2 \times 2 \text{ unit cells})$.

¹⁰A.J. Skarnulis, Thesis, Arizona State University 1975.

Example multislice: Pt catalyst



A: catalyst model (9500 atoms)¹¹. B: HREM image (Jeol 400kV).

¹¹file://localhost/Applications/jemsMacOSX/html/pot3D/pot3D.html

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland HRTEM Image Simulation

Bloch wave method: z-independent potential

When the scattering potential is periodic, the eigenstates $|j\rangle$ of the propagating electrons are Bloch waves. The hamiltonian of the system is projected on the eigenstates $|j\rangle$ with eigenvalues γ_j ("anpassung" parameter).

$$\widehat{H} = \sum_j \gamma_j |j> < j|$$

The evolution operator is then given by (since $V = V(\vec{\rho})$):

$$\widehat{U}(z,0) = e^{-i\widehat{H}z} = \sum_{j} e^{-i\gamma_{j}z} |j\rangle \langle j|$$

The wave-function at z developed on plane waves basis |q>:

$$\begin{split} \Psi(z) &= \sum_{q} \phi_{q}(z) |q> \\ \phi_{q}(z) &= < q |\widehat{U}(z,0)| 0> = \sum_{j} e^{-i\gamma_{j}z} < q |j> < j |0> \\ c_{0}^{*j} &= < j |0> \text{ and } c_{q}^{j} = < q |j> \end{split}$$

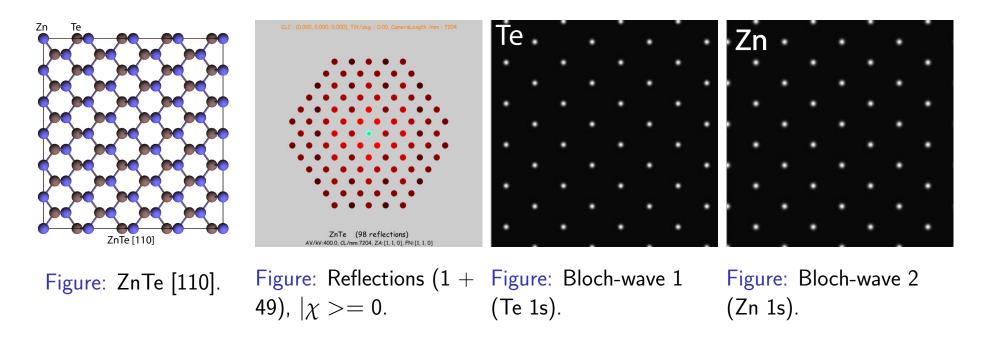
where in usual notation c_0^{*j} and c_q^j are the Bloch-wave excitations (component of the initial state |0 > on |j >) and coefficients (component of reflection |q > on |j >) respectively.

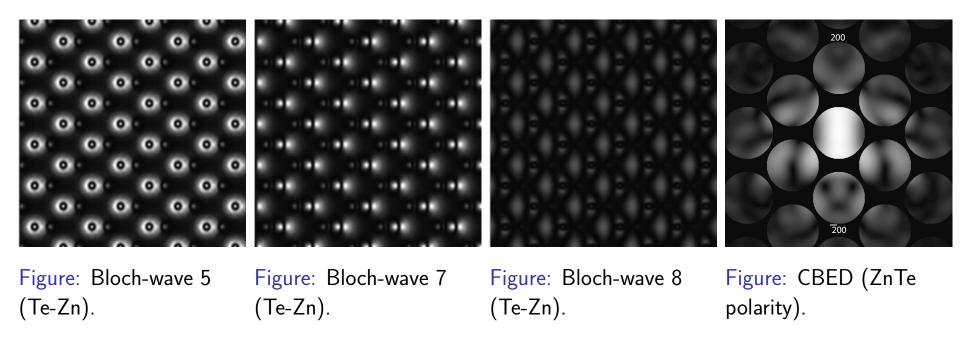
Simulation of:

- SAED (kinematical and dynamical).
- CBED (polarity).
- LACBED (specimen thickness, symmetry).
- ► PED (Precession Electron Diffraction).
- ► HRTEM.

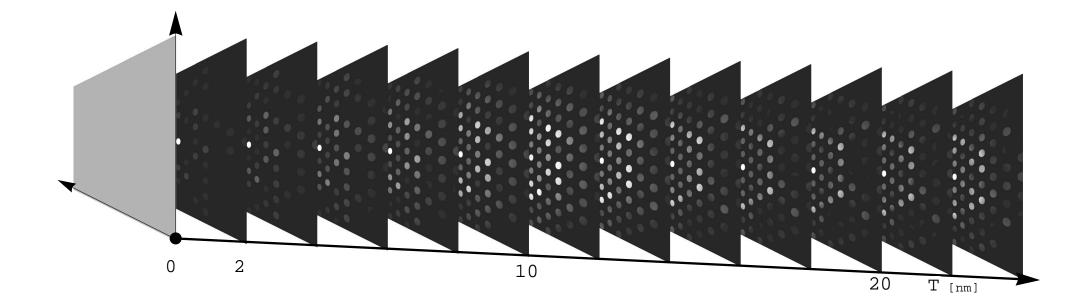
Works best for small lattice parameters crystals.

CBED: ZnTe [110]





SAED: Diffraction pattern & specimen thickness



In BFP diffraction pattern depends specimen thickness.

Goodness of dynamical diffraction theories?

LACBED: Si [001]

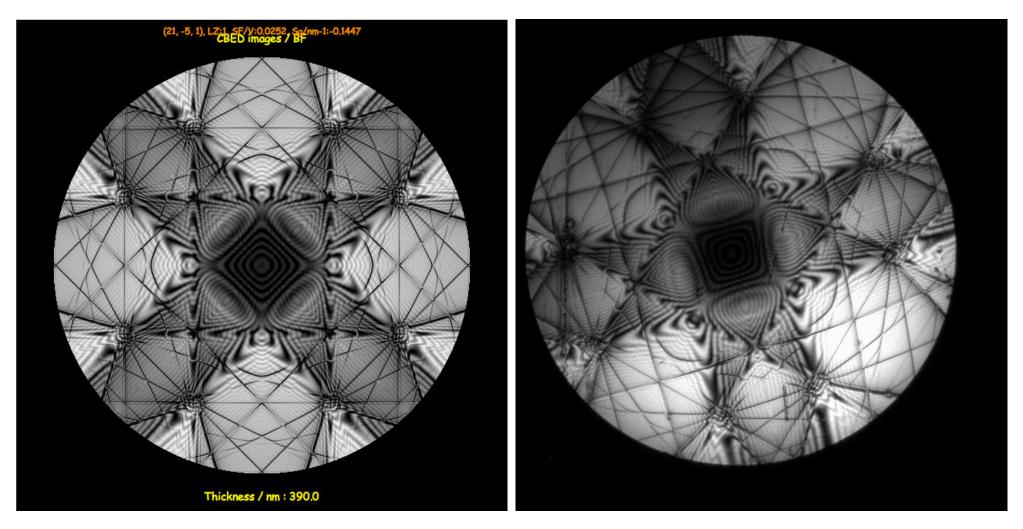


Figure: LACBED Si [001]: simulation.

Figure: LACBED Si [001]: experimental (Web site EM centre - Monash university, J. Etheridge).

Note that the experimental LACBED pattern is blurred (inelastic scattering and/or MTF of CCD camera?).

Questions:

1. Are dynamical effects important?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
 - kinematical?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
 - kinematical?
 - ► 2-beams dynamical?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
 - kinematical?
 - 2-beams dynamical?
 - n-beams dynamical?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
 - kinematical?
 - 2-beams dynamical?
 - n-beams dynamical?
- 3. Best precession angle?

- 1. Are dynamical effects important?
- 2. Can we interpret the measured intensities as:
 - kinematical?
 - 2-beams dynamical?
 - n-beams dynamical?
- 3. Best precession angle?
- 4. Maximum crystal thickness?

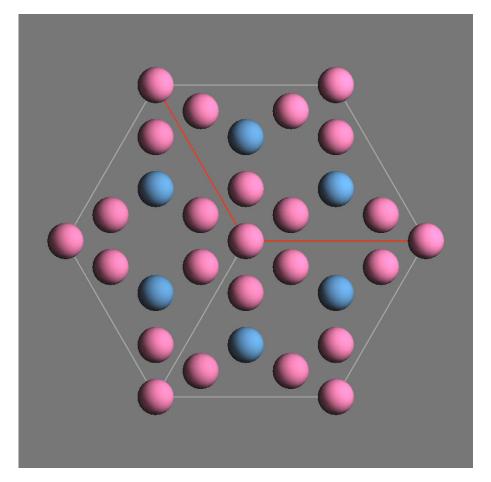


Figure: Structure projection CdCu₂

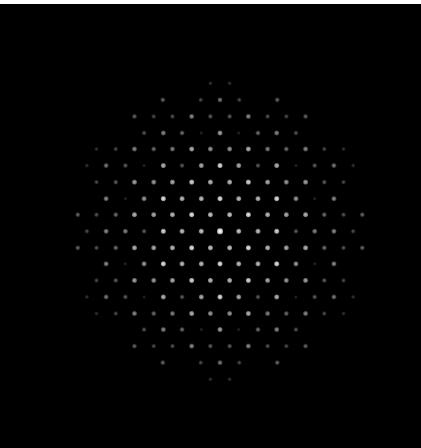


Figure: Dynamical SAED pattern (5 nm)

$CdCu_2[001]$: precession

Figure: CdCu₂ kinematical SAED pattern.

• • • • • • • • • •

6

• •

(1, 1, 0), LZ : 0 Center of Laue circle : (0,000,0.000,0.000)::Zone axis : [0, 0, 1]=[0, 0, 0, 1] Tilt angle / deg. : 0,00

CdCu2 (121 reflections), thickness:10.0 [nm] AV/kV:100.00, CL/mm:3000, ZA:[0, 0, 1]=[0, 0, 0, 0, 1], FN:[0, 0, 1]=[0, 0, 0, 1]

Figure: CdCu₂ dynamical SAED pattern (5 nm)

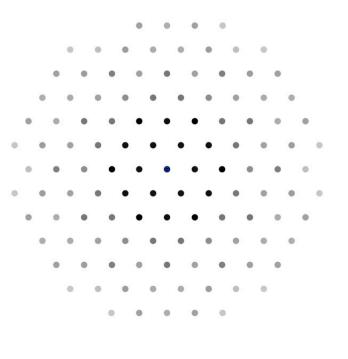
$CdCu_2[001] - ZAP$

. ٠ 1 ٠ ٠

. . . .

(1, 1, 0), LZ : 0

Center of Laue circle : (0.000,0.000,0.000)::Zone axis : [0, 0, 1]=[0, 0, 0, 1] Tilt angle / deg. : 0.00



CdCu2 (121 reflections), thickness:10.0 [nm] AV/kV:100.00, CL/mm:3000, ZA:[0, 0, 1]=[0, 0, 0, 0, 1], FN:[0, 0, 1]=[0, 0, 0, 1]

Figure: Kinematical.

Figure: Dynamical (121 - beams).

$CdCu_2[001]$ – precession 3^o

Figure: Kinematical.

$CdCu2{::}Precession{::[u,v,w]{:[0,0,1]}::Angle / deg. :3.00} \\$

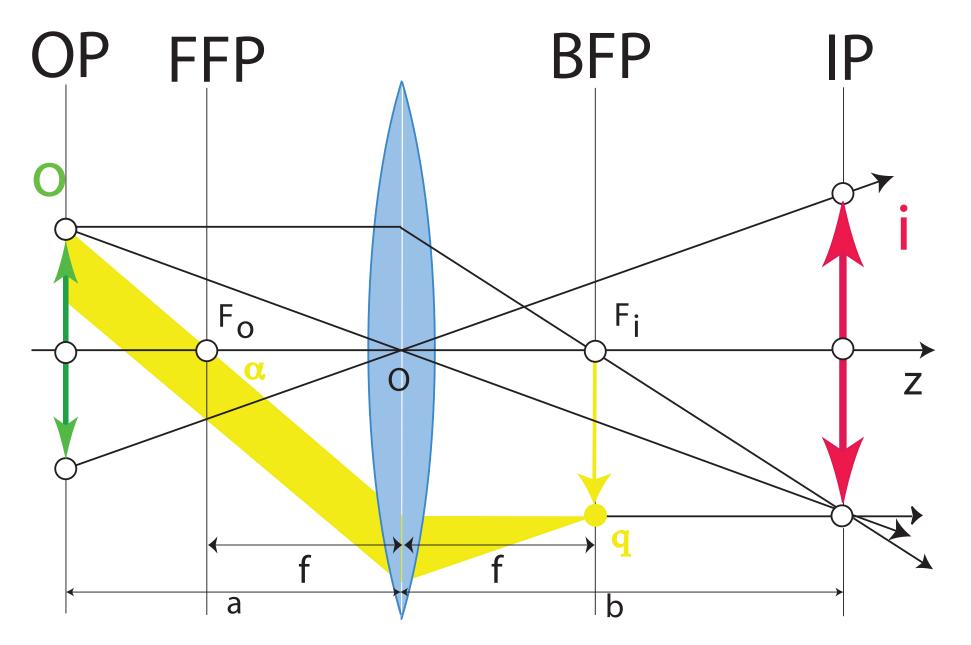
Thickness / nm : 21.0

Figure: Dynamical (121 - beams).

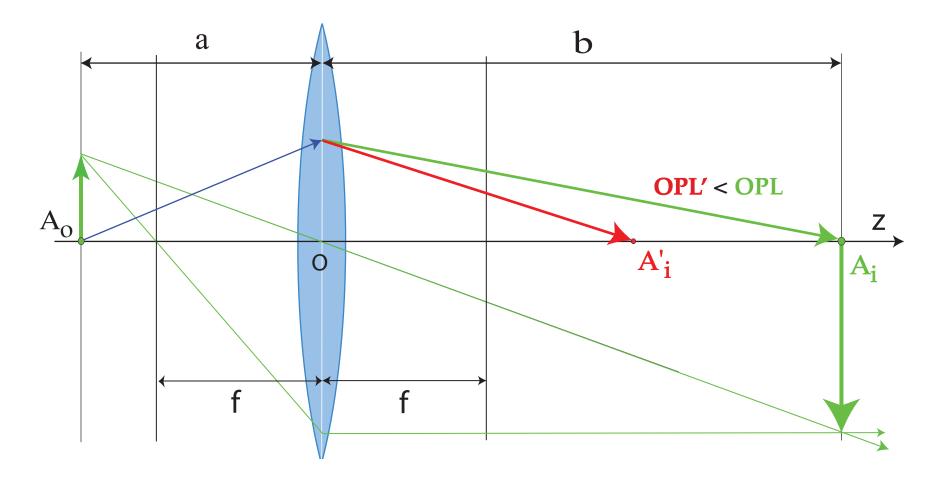
At first sight kinematical approximation looks sufficient (detailed values are available).

Image formation

Paraxial optics: perfect thin lens



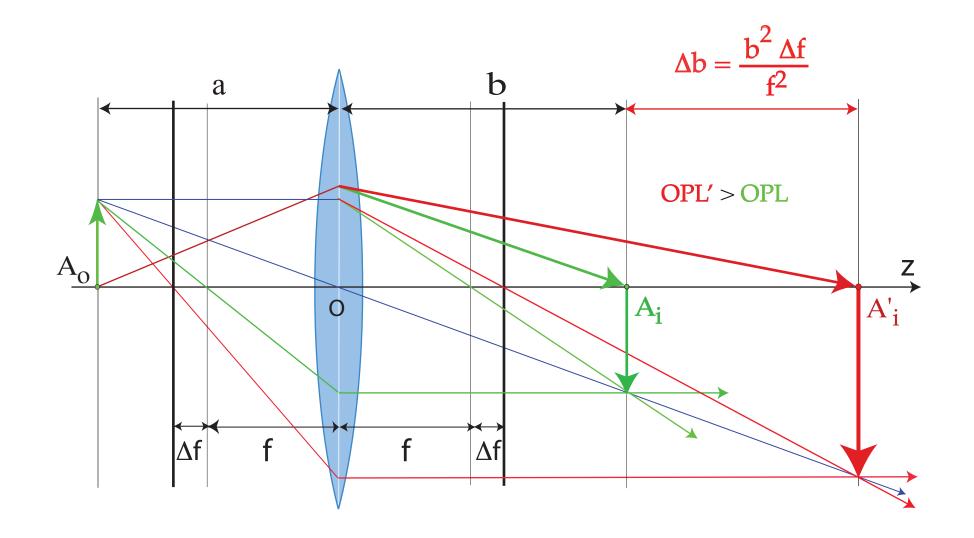
Principal rays of paraxial optics. Reflection (plane wave) making an angle α , where $\alpha = 2\theta_B$, corresponds to spatial frequency q.



In presence of spherical aberration, the optical path length (OPL') form A_o to A'_i is smaller than OPL from A_o to A_i . The wavefront at A'_i is out-of-phase by¹²:

$$e^{-2\pi i \frac{C_s \lambda^3 (\vec{q} \cdot \vec{q})^2}{4}}$$

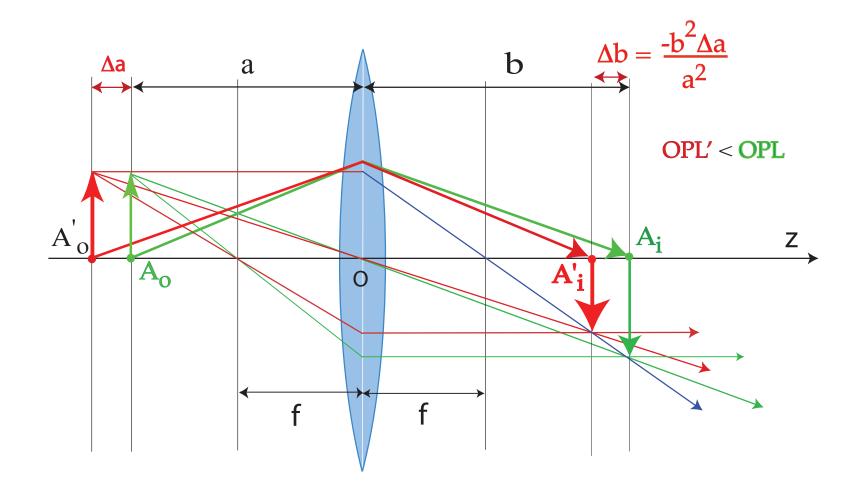
Optical Path Length: underfocus



Underfocus weakens the objective lens, i.e. increases f. As a consequence the OPL from A_o to A'_i is larger:

$$e^{2\pi i \frac{\Delta f \lambda(\vec{q} \cdot \vec{q})}{2}}$$

Optical Path Length: eccentricity



On the contrary keeping f constant and moving the object by Δa decreases the OPL.

Image forming system has 2 properties (Abbe theory):

- ► Linear.
- Space invariant.

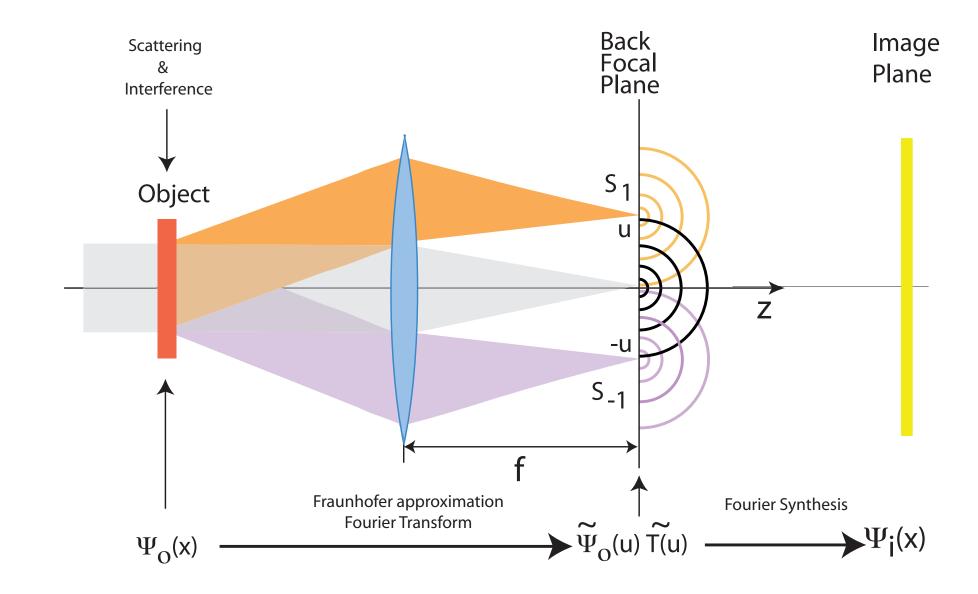
Coherence of illumination:

- Source size (spatial coherence).
- Energy spread (temporal coherence).

HRTEM: T (q', q) : transmission cross-coefficients \implies approximation by envelope functions.

Microscope modeling: Abbe image formation theory

Objective lens is modeled as a thin lens that brings Fraunhofer diffraction pattern at finite distance (i.e. in its Back Focal Plane).



Transfer function $T(\vec{q})$

$$T(\vec{q}) = e^{\chi(\vec{q})} = \cos(\chi(\vec{q})) + i \underbrace{\sin(\chi(\vec{q}))}_{\text{Contrast transfer function}}$$

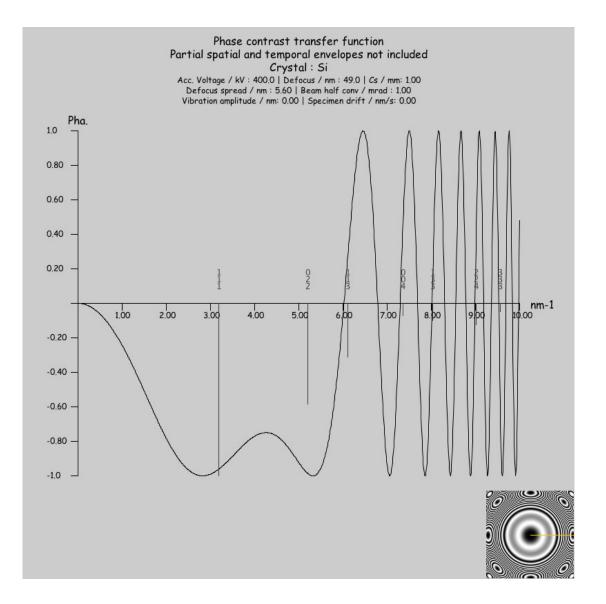
$$\chi(\vec{q}) = \pi \left[W_{20} \lambda \vec{q} \cdot \vec{q} + W_{40} \frac{\lambda^3 (\vec{q} \cdot \vec{q})^2}{2} + \ldots \right]$$

Where:

- W_{20} : defocus (z)
- W_{40} : spherical aberration (C_s)

 $\{z, \pi (u^2 + v^2) \lambda\}$ (defocus) { $W(1,1), 2\pi(u\cos(\phi(1,1)) + v\sin(\phi(1,1)))$ } { $W(2,2), \pi\lambda((u-v)(u+v)\cos(2\phi(2,2))+2uv\sin(2\phi(2,2)))$ } $W(3,1), \frac{2}{3}\pi (u^2 + v^2) \lambda^2 (u \cos(\phi(3,1)) + v \sin(\phi(3,1))) \}$ $W(3,3), \frac{2}{3}\pi\lambda^{2}\left(u\left(u^{2}-3v^{2}\right)\cos(3\phi(3,3))-v\left(v^{2}-3u^{2}\right)\sin(3\phi(3,3))\right)\right\}$ $W(4,0), \frac{1}{2}\pi (u^2 + v^2)^2 \lambda^3$ (spherical aberration) $W(4,2), \frac{1}{2}\pi (u^2 + v^2) \lambda^3 ((u - v)(u + v) \cos(2\phi(4,2)) + 2uv \sin(2\phi(4,2))) \}$ $W(4,4), \frac{1}{2}\pi\lambda^{3}\left(\left(u^{4}-6v^{2}u^{2}+v^{4}\right)\cos(4\phi(4,4))+4u(u-v)v(u+v)\sin(4\phi(4,4))\right)\right\}$ $W(5,1), \frac{2}{5}\pi \left(u^{2}+v^{2}\right)^{2} \lambda^{4} \left(u \cos(\phi(5,1))+v \sin(\phi(5,1))\right) \Big\}$ $W(5,3), \frac{2}{5}\pi (u^2 + v^2) \lambda^4 (u (u^2 - 3v^2) \cos(3\phi(5,3)) - v (v^2 - 3u^2) \sin(3\phi(5,3))) \}$ $W(5,5), \frac{2}{5}\pi\lambda^{4}\left(u\left(u^{4}-10v^{2}u^{2}+5v^{4}\right)\cos(5\phi(5,5))+v\left(5u^{4}-10v^{2}u^{2}+v^{4}\right)\sin(5\phi(5,5))\right)\right\}$ $W(6,0), \frac{1}{3}\pi (u^2 + v^2)^3 \lambda^5 \}$ $W(6,2), \frac{1}{3}\pi (u^2 + v^2)^2 \lambda^5 ((u-v)(u+v)\cos(2\phi(6,2)) + 2uv\sin(2\phi(6,2))) \Big\}$ $W(6,4), \frac{1}{2}\pi\lambda^5((u^6-5v^2u^4-5v^4u^2+v^6)\cos(4\phi(6,4))+4uv(u^4-v^4)\sin(4\phi(6,4)))\}$ $\{W(6,6), \frac{1}{2}\pi\lambda^5((u^6-15v^2u^4+15v^4u^2-v^6)\cos(6\phi(6,6))+2uv(3u^4-10v^2u^2+3v^4)\sin(6\phi(6,6)))\}$

Contrast transfer function: $sin(\chi(\vec{q}))$



The transfer function of the objective lens in the absence of lens current and accelerating voltage fluctuations (Scherzer defocus). The (111) and (022) reflections of Si are phase shifted by $-\frac{\pi}{2} \rightarrow$ black atomic columns.

HRTEM image intensity: WPOA

In the Weak Phase Object Approximation under optimum transfer conditions the image intensity $I(\vec{x})$ is:

▶ positive *C_s* (black atomic columns)

$$I(\vec{x}) \sim 1 - 2\sigma V_{\rho}(\vec{x})$$

• negative C_s (white atomic columns)

$$I(\vec{x}) \sim \sigma V_p(\vec{x})$$

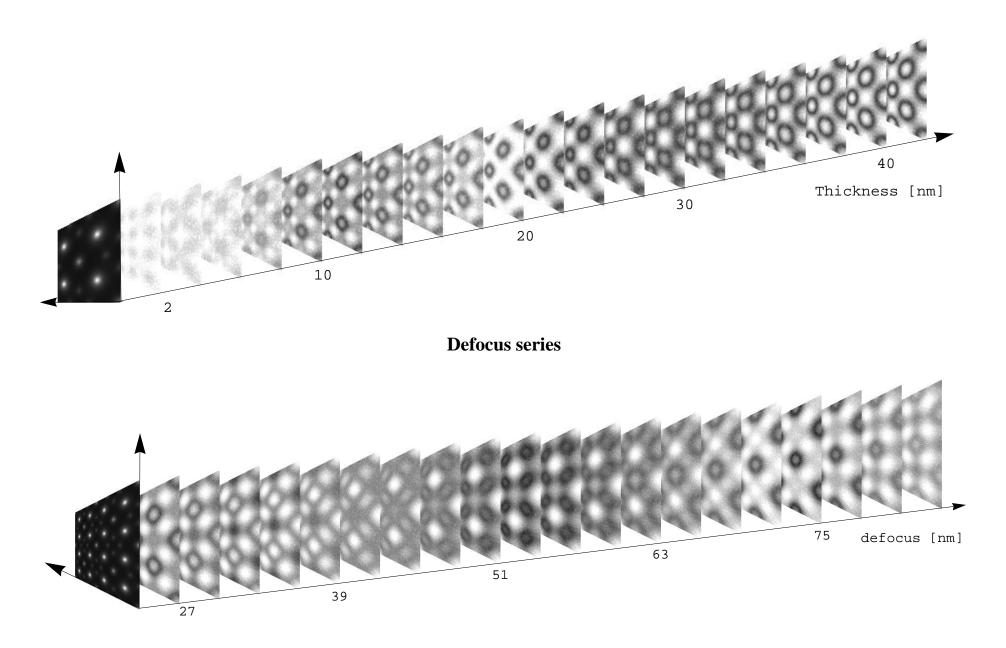
Where:

 $V_p(\vec{x})$: projected potential

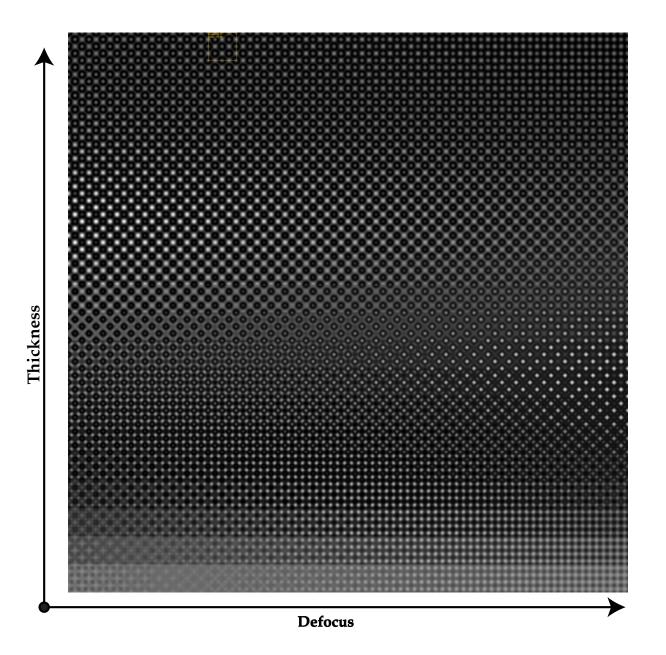
 σ : electron matter interaction constant

HRTEM image depends on specimen thickness and object defocus

Thickness series



Si [001] images map: contrast dependence of defocus & thickness



HREM map does not include the Modulation Transfer Function (MTF) of the detector.

Pierre StadelmannCIME-EPFLCH-1015 LausanneSwitzerland HRTEM Image Simulation

Problems

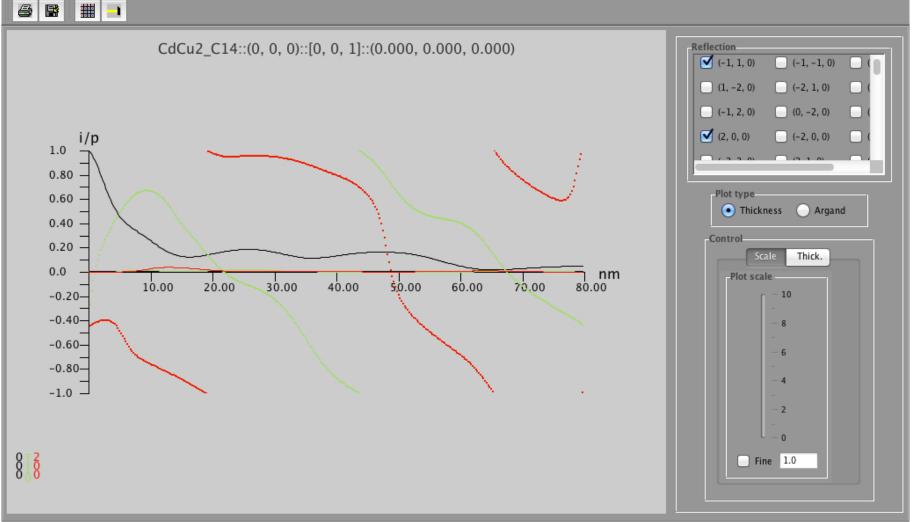
Object

- \rightarrow Atomic scattering amplitude below 50 kV?
- \blacktriangleright \rightarrow Potential by DFT calculation?
- **١**...

- HRTEM \rightarrow Phase of diffracted beams evolves with specimen thickness.
- HRTEM \rightarrow MTF of image acquisition system (Stobbs factor?).
- HRTEM / HRSTEM \rightarrow Electron channeling depends on atomic column content.
- HRTEM / HRSTEM \rightarrow Aberrations of optical system.
- ► HRTEM → Inelastic scattering (J.M. Cowley, E.J. Kirkland, D. van Dyck, A. Rosenaurer, K. Ishizuka, Z.L. Wang, H. Rose, H. Mueller, L. Allen, …).
- HRTEM / HRSTEM \rightarrow Drift, vibration, Johnson-Nyquist noise¹³, ...

¹³S. Uhlemann, H. Mueller, P. Hartel, J. Zach & M. Haider, Phys. Rev. Lett. **111** (2013) 046101.

HRTEM problem: amplitude and phase of diffracted beams



Note that phase of diffracted beam is $\frac{\pi}{2}$ out-of-phase with respect to transmitted beam.

HRTEM problem: CCD MTF (Gatan MSC 1K x 1K, 24 μ m)

To make quantitative comparison with experimental HRTEM images the MTF of the detector must be introduced in the simulation.

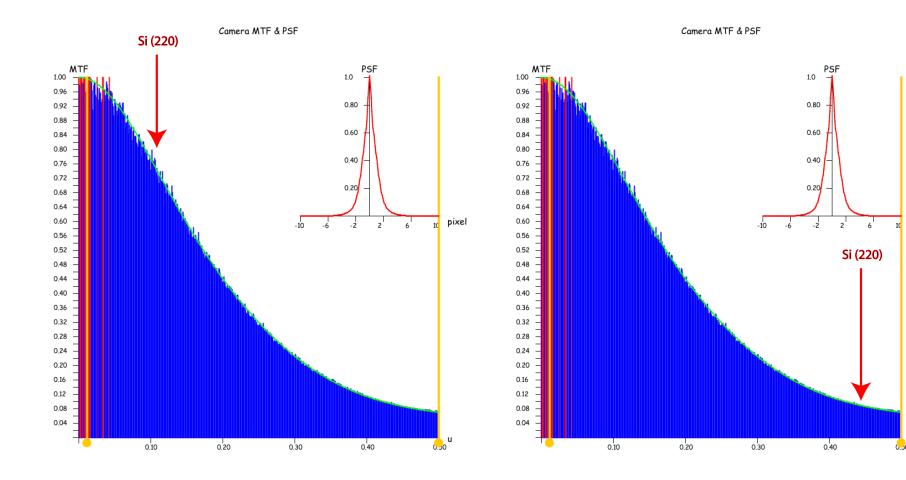


Figure: At high magnification Si (220) planes imaged with high contrast.

Figure: At low magnification Si (220) planes imaged with low contrast.

For quantitative comparison always use highest possible magnification (or include CCD MTF in simulations)!

pixel

u

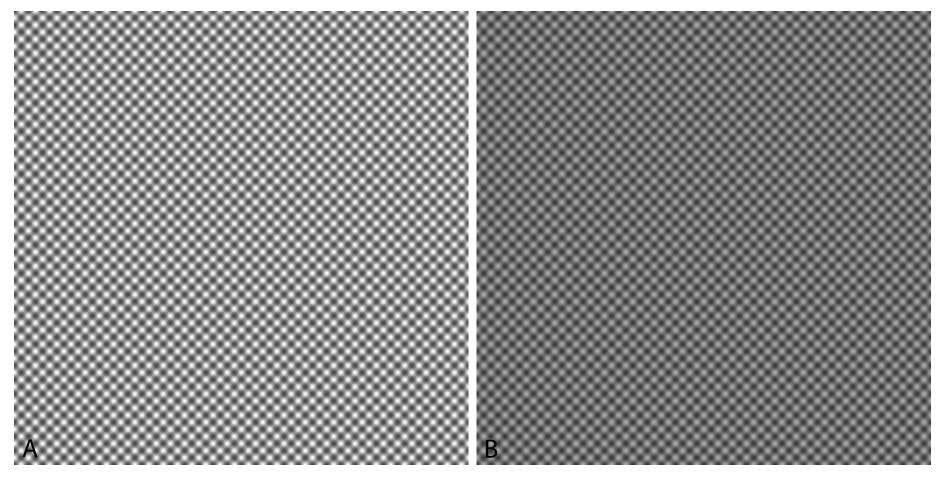


Figure: A: Si [001] simulation.

Figure: B: Si [001], simulation + CCD MTF.

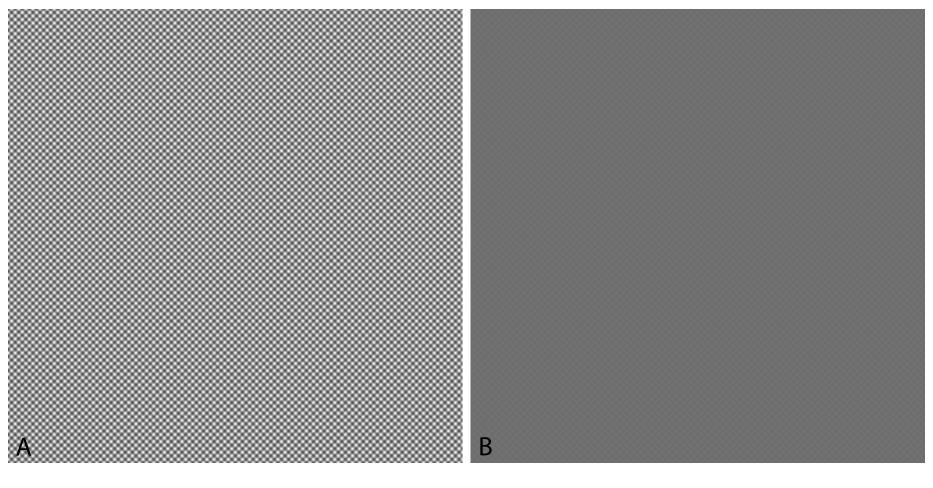


Figure: A: Si [001] simulation.

Figure: B: Si [001], simulation + CCD MTF.

HRTEM / HRSTEM problem: electron channeling (ZnTe [110])

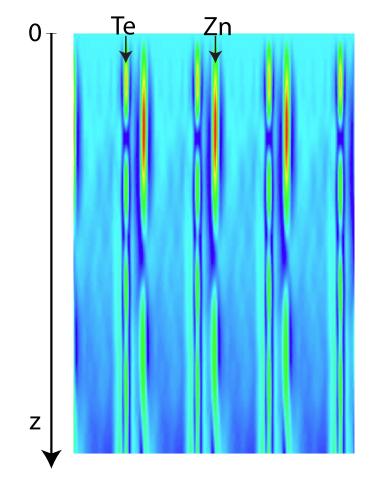
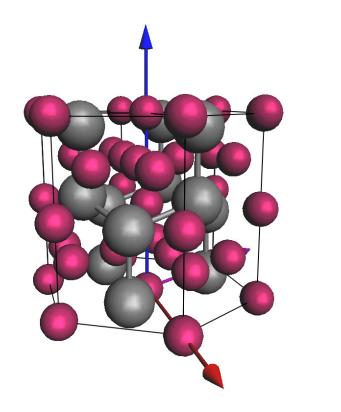


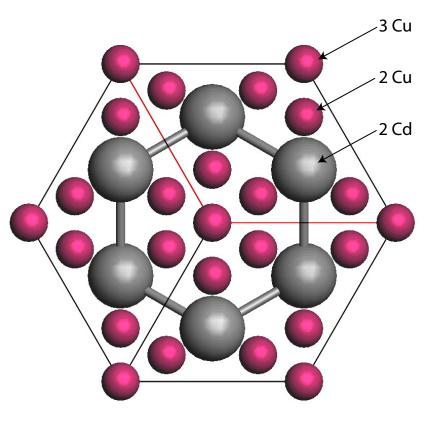
Figure: ZnTe [110] wave function intensity.

Channeling explains several features of HRTEM and STEM images (i.e. appearance / disappearance of contrast of impurities).

Does C_s and C_c correction solves all imaging problems?

Example: $CdCu_2$, visibility of the 3 Cu atomic columns.



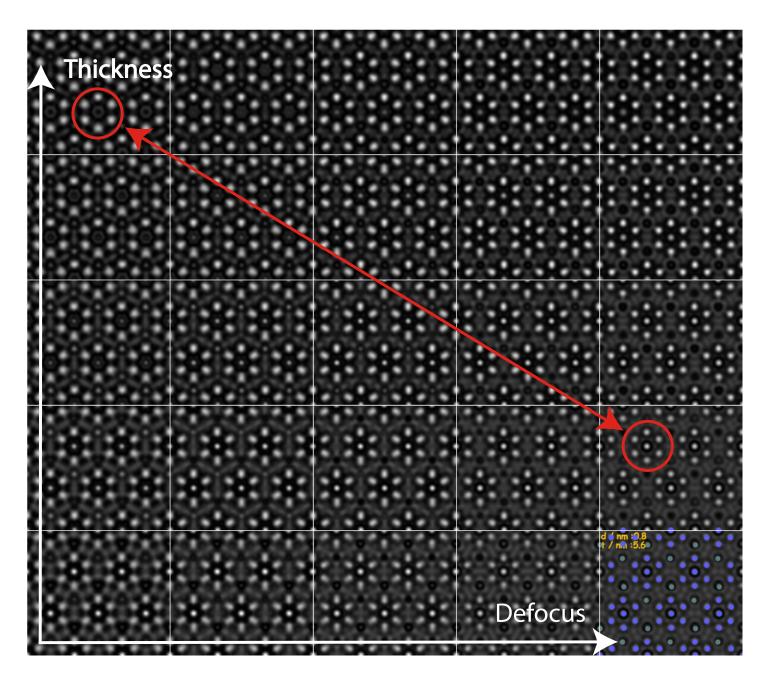


HRTEM image simulation conditions

Acc. [kV]	$C_s[mm]$	$C_5[mm]$	$C_c[mm]$	$\Delta E[eV]$	Z [nm]	$\Delta z[nm]$
300	-0.008	30	0.5	0.6	-4.9	1
300	-0.008	30	0.1	0.2	-2.0	1

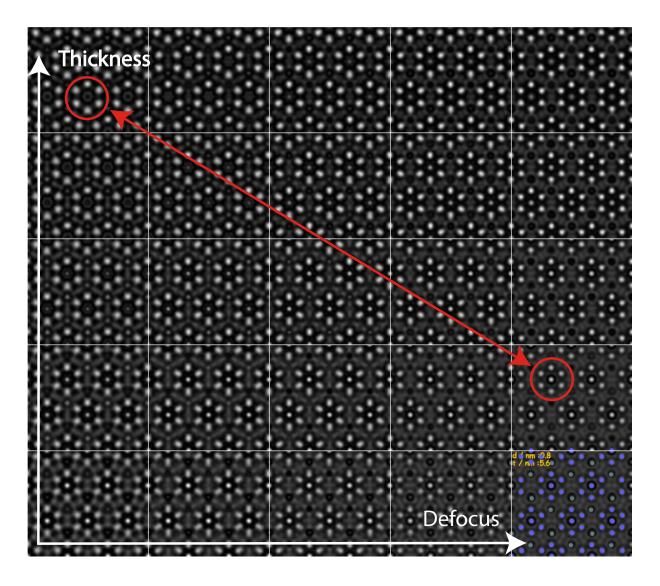
Dynamical scattering effects are not affected by C_s and/or C_c corrected TEM!

*CdCu*₂[001]: imaging parameters set 1



Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.

$CdCu_2[001]$: imaging parameters set 2



Improving C_c and ΔE does not affect the visibility of 3 the Cu atomic columns. It depends on specimen thickness (and defocus indeed). Visibility of the 3 Cu atomic columns is always affected by dynamical scattering. Only extremely thin specimen (≤ 10 nm) will allow faithful imaging of crystal projected potential.

High Angle Annular Dark Field (HAADF): inelastically scattered electrons. When simulation is necessary how to simulate images? Numerous approximations:

- Simple projected + convolution with probe intensity: no channeling effect (Weak Object Approximation).
- Multislice calculation: channeling + inelastic scattering (absorption potential) + convolution with probe intensity.
- Frozen lattice (phonon) approximation: atoms of super-cell displaced out of equilibrium position, probe scanned on imaged area, intensity collected by annular detector.
- Pennycook, Nellist, Ishizuka, Shiojiri, Allen, Wang, Rosenauer, van Dyck, ...

Except the first 2 methods, simulation time expensive (luxury?). Approximations (necessity) may suffice...

HAADF: graphene

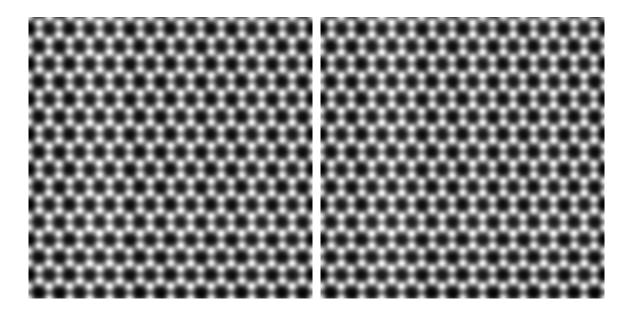


Figure: Proj. pot. approx.

Figure: Channeling calculation.

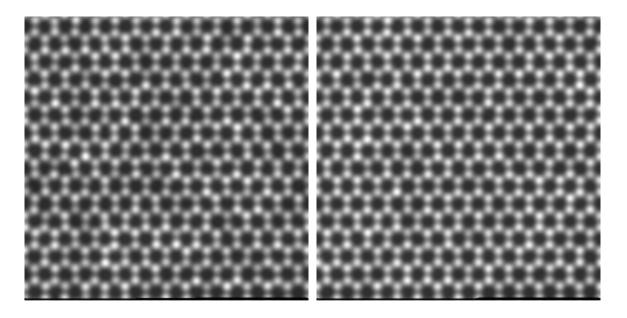


Figure: Frozen lattice 5 conf.

Figure: Frozen lattice 10 conf.

HRSTEM - HRTEM comparison: graphene with add atoms

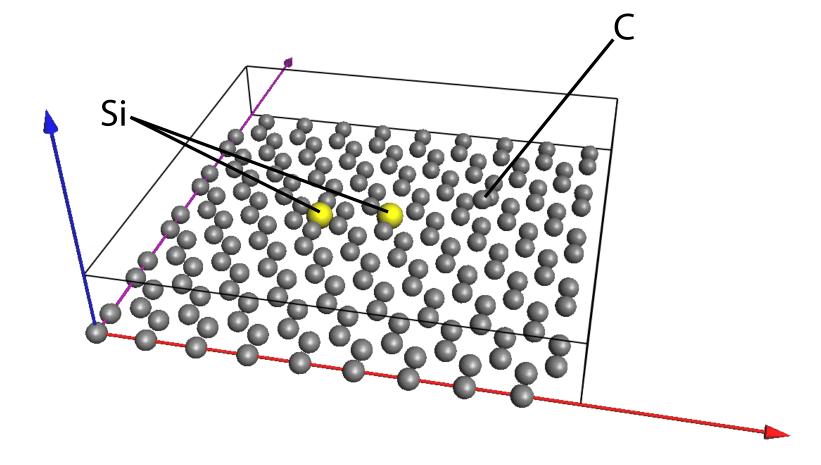


Figure: Graphene with Si in 6 C ring, Si substitutional and 2 C column.

Graphene HAADF (100 kV, 70 -150 mrad)

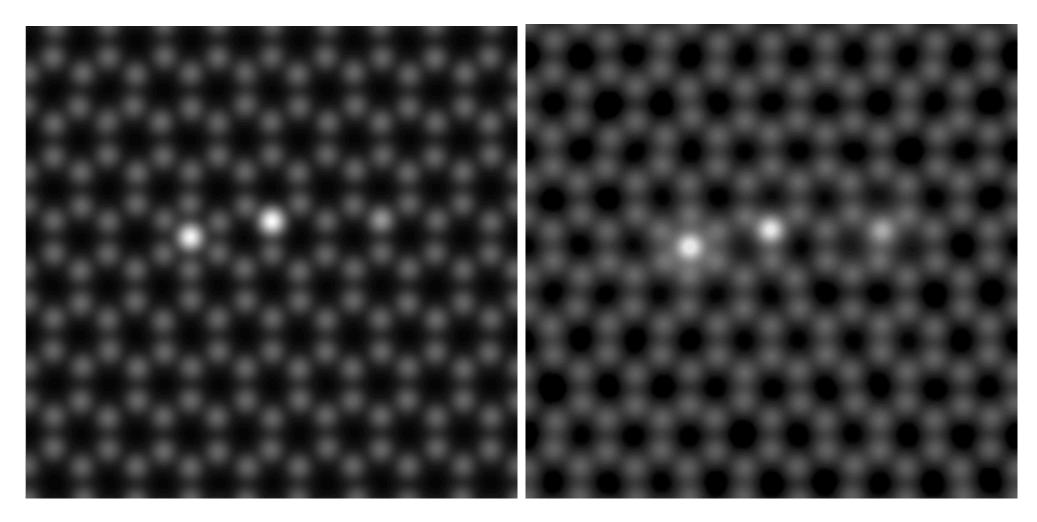


Figure: Frozen lattice (\sim 400 s).

Figure: Channeling (~ 2 s).

One Si shows more contrast than 2 C atoms (i $\sim Z^2$) : 14² compared to $\sim 2 \times 6^2$.

Graphene HRTEM (100 kV, $C_s - 0.033 mm$)

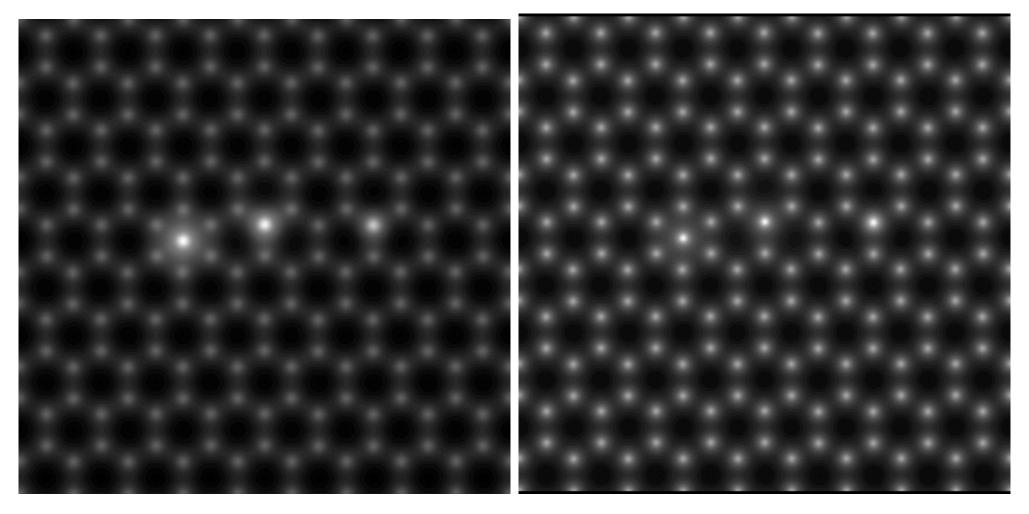


Figure: Weak phase object app., $C_c = 0.5mm$

Figure: Multislice, $C_s = -0.033mm$, $C_c = 0$, no thermal magnetic noise.

HRTEM does not display the strong contrast difference between one Si and two C as given by HAADF.

No doubt that image simulation necessary for quantitative work¹⁴.

- Exit wave function recovery using focal series reconstruction.
- Transport of intensity equation.

But... can also be used for teaching or planing HRTEM/HRSTEM observations.

¹⁴K. W. Urban, Science **321** (2008) 506.

HRTEM / HRSTEM problem: aberrations of optical system

Reaching 0.05 nm resolution sets very strong conditions on aberrations correction.

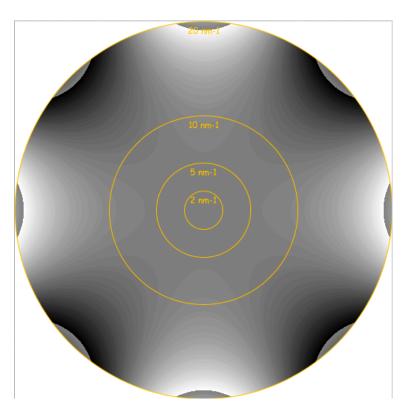


Figure: Aberration figure of $C_{34}(0.5\mu m)$, phase jump at $\frac{\pi}{4}$.

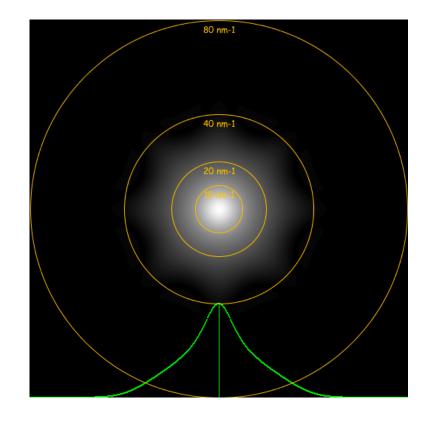


Figure: Optical Transfer Function.

Note that Optical Transfer Function (HRSTEM) transfers higher spatial frequencies than Ccoherent Transfer Function (HRTEM).

\rightarrow Let's look at perfect microscopes!

Dynamical theory of elastic scattering of high energy electron

We aim to understand in details multiple elastic scattering of electrons by crystals.

- ► High energy electron (eE).
- Periodic interaction potential $V(\vec{r})$.
- ► Time independent flux of incident electrons.

The fundamental equation of electron elastic scattering by a potential V_v [Volt](positive inside a crystal) in the approximation of a stationary flux of electrons of a given energy e E is the Schrödinger equation ([?]):

$$\Delta \Phi(\vec{r}) + \frac{2me}{\hbar^2} [E + V_v(\vec{r})] \Phi(\vec{r}) = 0$$

With a change of notation its is written as:

$$\left[\triangle + 4\pi^2 K_i^2\right] \Phi(\vec{r}) = -4\pi^2 V_v(\vec{r}) \Phi(\vec{r})$$

Where the wavevector $|\vec{K}_i|$ of the incident electrons is given by:

$$|K_i| = \frac{\sqrt{2meE}}{h}$$

and

$$m = \gamma m_0$$

Schrödinger equation

The Laplacian $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is written as: $\triangle_{\rho} + \frac{\partial^2}{\partial z^2}$. As a result, $[\triangle + ...]e^{2\pi i k_z z} \Psi(\rho; z)$ is given by: $[\triangle_{\rho} + \frac{\partial^2}{\partial z^2} + ...]e^{2\pi i k_z z} \Psi(\rho; z)$. Performing the z-differentiation:

$$\frac{\partial^2}{\partial z^2} e^{2\pi \imath k_z z} \Psi(\rho; z) = e^{2\pi \imath k_z z} \left[-4\pi^2 k_z^2 + 4\pi \imath k_z \frac{\partial}{\partial z} + \frac{\partial^2}{\partial z^2}\right] \Psi(\rho; z)$$

20

Inserting the last expression and dropping the term $e^{2\pi i k_z z}$:

$$\begin{split} [\triangle_{\rho} + 4\pi^{2}(K_{i}^{2} - k_{z}^{2} + V(\rho; z)) + 4\pi\imath k_{z}\frac{\partial}{\partial z} + \frac{\partial^{2}}{\partial z^{2}}]\Psi(\rho; z) &= 0 \\ \\ \text{Since } K_{i}^{2} &= k_{z}^{2} + \chi^{2}: \\ [\triangle_{\rho} + 4\pi^{2}\chi^{2} + 4\pi^{2}V(\rho; z) + 4\pi\imath k_{z}\frac{\partial}{\partial z} + \frac{\partial^{2}}{\partial z^{2}}]\Psi(\rho; z) &= 0 \end{split}$$

Rearranging the last equation:

$$\imath \frac{\partial \Psi(\rho;z)}{\partial z} = -\frac{1}{4\pi k_z} [\triangle_{\rho} + 4\pi^2 \chi^2 + 4\pi^2 V(\rho;z) + \frac{\partial^2}{\partial z^2}] \Psi(\rho;z)$$

$$\imath \frac{\partial \Psi(\rho;z)}{\partial z} = -\frac{1}{4\pi k_z} [\triangle_{\rho} + 4\pi^2 \chi^2 + 4\pi^2 V(\rho;z) + \frac{\partial^2}{\partial z^2}] \Psi(\rho;z)$$

The term $\left|\frac{\partial^2 \Psi(\rho;z)}{\partial z^2}\right|$ being much smaller than $\left|k_z \frac{\partial \Psi(\rho;z)}{\partial z}\right|$ we drop it (this is equivalent to neglect backscattering).

Fundamental equation of elastic scattering of high energy mono-kinetic electrons with a potential within the approximation of small angle scattering:

$$u\frac{\partial}{\partial z}\Psi(\rho;z) = -\frac{1}{4\pi k_z}[\triangle_{\rho} + 4\pi^2\chi^2 + 4\pi^2 V(\rho;z)]\Psi(\rho;z)$$

Time dependent Schrödinger equation \implies solution by many methods of quantum mechanics!

Remarks

- ► The approximations of the fundamental equation are equivalent to assume that the scattering potential is small compared to the accelerating potential and that k_z varies only slightly with z. It is in fact a quite good approximation, since the mean crystal potential is of the order of 10 20 V.
- Electron backscattering is neglected, the electron are moving forwards.
- ► The fundamental equation is actually equivalent to a 2-dimensional Schrödinger equation (ρ = {x, y}) where z plays the role of time. The system evolution is causal, from the past to the future.

Fundamental equation in Hamiltonian form:

$$\imath \frac{\partial}{\partial z} \Psi = H \ \psi$$

where:

$$H = -\frac{1}{4\pi k_z} [\triangle_{\rho} + 4\pi^2 \chi^2 + 4\pi^2 V(\rho; z)] = H_o + \frac{4\pi^2 V(\rho; z)}{4\pi k_z}$$

A fundamental postulate of quantum mechanics ([?, ?]) says that the evolution operator obeys the equation:

$$\iota \frac{\partial}{\partial z} U(z,0) = H(\rho;z) \ U(z,0)$$

U(z, 0): unitary operator (the norm of $|\Psi\rangle$ is conserved), in general not directly integrable \implies approximations.

U(z, 0) can be directly integrated only when $H(\rho; z)$ and $\frac{\partial}{\partial z}H(\rho; z)$ commute. In that case the general solution is [?]:

$$U(z,0) = e^{-i \int_0^z H(\tau) d\tau}$$

 $H(\rho; z)$ and $\frac{\partial}{\partial z}H(\rho; z)$ commute when:

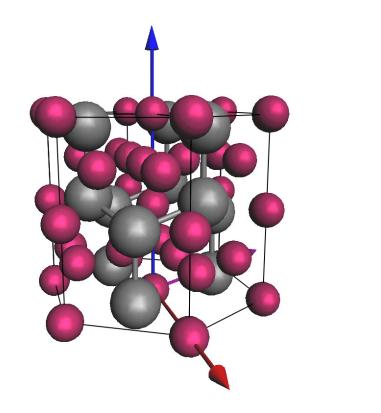
- $V(\rho; z)$ does not depend on z, i.e. $V(\rho; z) = V(\rho)$ (perfect crystal).
- $V(\rho; z)$ can be neglected (free space propagation).
- $H(\rho; z)$ is approximated by it potential term (phase object).

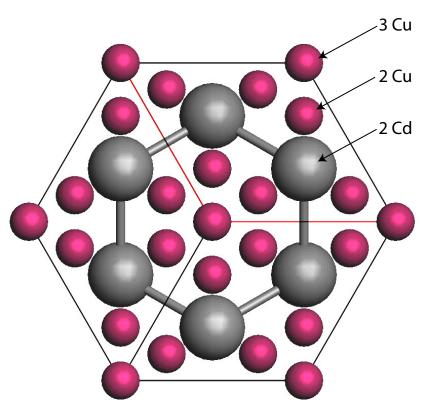
Three approximations are available in jems:

- Multislice method.
- Bloch wave method.
- Howie-Whelan column approximation.

Future of HRTEM simulation with the C_s and C_c corrections?

Example: $CdCu_2$, visibility of the 3 Cu atomic columns.

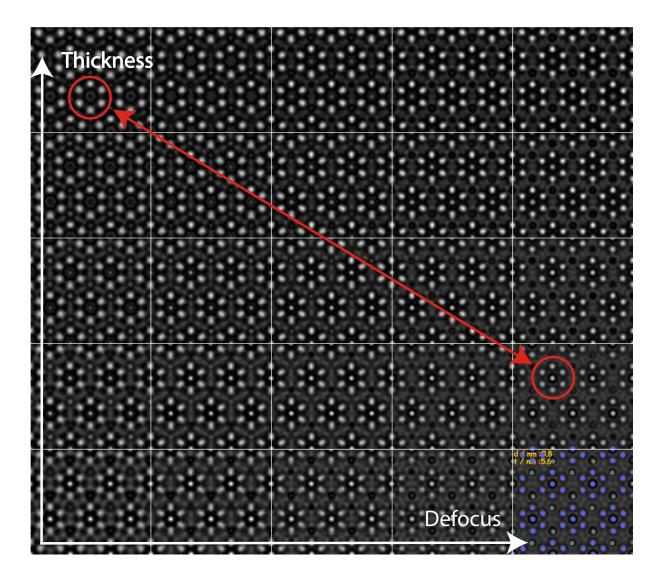




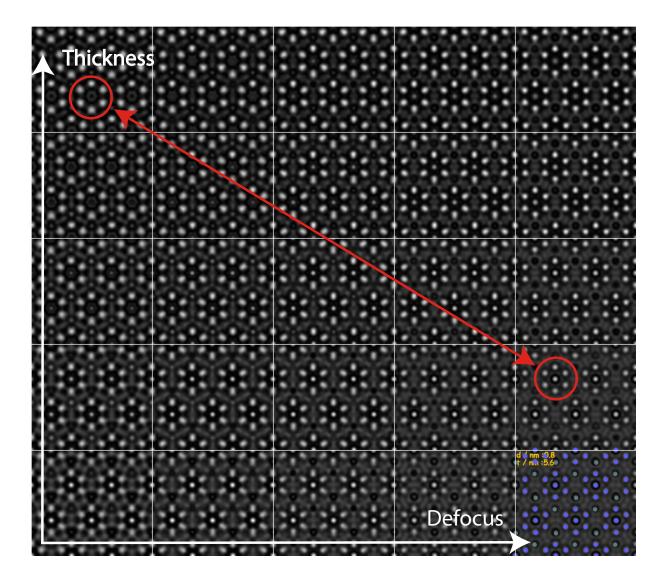
HRTEM image simulation conditions

Acc. [kV]	$C_s[mm]$	$C_5[mm]$	$C_c[mm]$	$\Delta E[eV]$	Z [nm]	$\Delta z[nm]$
300	-0.008	30	0.5	0.6	-4.9	1
300	-0.008	30	0.1	0.2	-2.0	1

Dynamical scattering effects are not affected by C_s and/or C_c corrected TEM!



Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.



Improving C_c and ΔE does not affect the visibility of 3 the Cu atomic columns depends on specimen thickness and defocus. Visibility of the 3 Cu atomic columns is affected dynamical scattering (1 MeV C_s and C_c TEM). High Angle Annular Dark Field (HAADF): inelastically scattered electrons. How to simulate images?

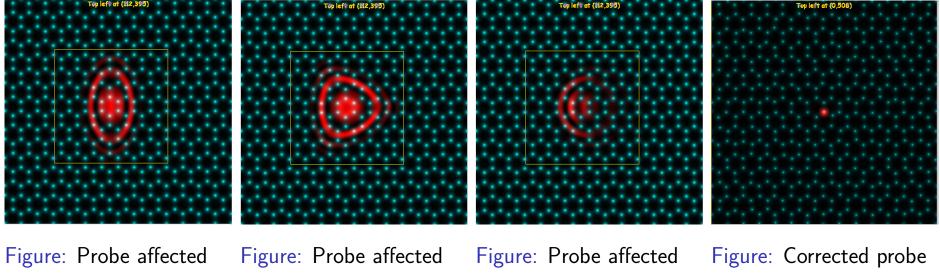
Various approximations:

- ► Simple projected + convolution with probe intensity: no channeling effect (WPOA).
- Multislice calculation: channeling + inelastic scattering (absorption potential) + convolution with probe intensity.
- Frozen phonons approximation: atoms of super-cell displaced out of equilibrium position¹⁵, probe scanned on imaged area, intensity collected by annular detector.
- Ishizuka: ...
- Shiojiri:...
- ▶

Except the first 2 methods, simulation time expensive. Approximations may suffice...

¹⁵file://localhost/Applications/jemsMacOSX/html/graphene/ap.html

HAADF: graphene



by 2 fold astigmatism.

by 3 fold astigmatism.

by coma.

(best defocus).

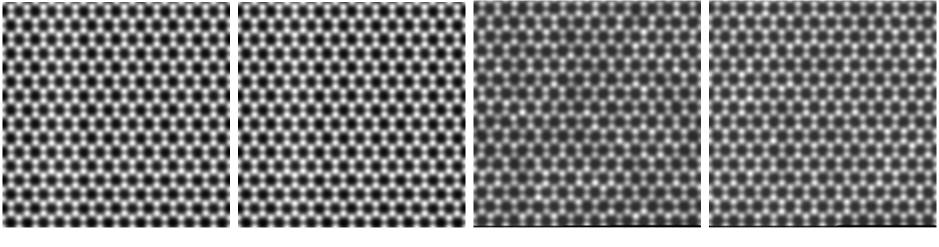


Figure: HAADF projected potential approximation.

Figure: HAADF multislice calculation (simple).

Figure: Frozen phonons 5 configurations.

Figure: Frozen phonons 10 configurations.