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How to do diffraction/image
simulation?
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Formation of Electron Microscopy diffraction/images involves complex physical
processes.

Approximations and models of these physical processes

are required in order to perform computer simulations. Models are based on
electron scattering, diffraction, optics, ...

Needed: crystallography, optics, quantum mechanics, ... and computer
programming.
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TEM (very) simplified model
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Modeling steps: Incident wave (PW), crystal (OP), electron-matter interaction, Fraunhofer
approximation, image formation (Abbe theory), ...
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Image formation modeling (HRTEM)
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Image wave function: |Ψi >

|χ > =⇒ incident wave function

|Ψi >=
q′

∑ < ρ|q′ >︸ ︷︷ ︸
Fourier synthesis

q
∑ < q′|T (q′, q)|q >︸ ︷︷ ︸

Objective lens transfer

< q|U(z , 0)|χ >︸ ︷︷ ︸
Fourier transform

Assuming that the potential is z independent, the evolution operator U(z , 0)
depends on the Hamiltonian H(~ρ, z) of the system ”crystal + incident electron”
(where ~ρ are the (x, y) coordinates in a plane perpendicular to the optical axis
Oz of the microscope):

U(z , 0) = exp−i
∫ z

0 H(~ρ,z)dz

The main problem of high-energy electron diffraction and imaging is to
determine U(z , 0).
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Modeling steps

Prior to perform any calculation the following items (from the electron source to the detector)
must characterized and modeled:

I The electron beam properties.
I Convergence.
I Source size.
I Coherence (spatial and temporal).

I The specimen properties.
I How is the incident electrons beam scattered by the specimen?
I How does the microscope transfer the scattered electron beam?
I How do we measure the properties of the scattered electron beam (diffraction, image,

hologram)?
I What are the properties of the detection system?
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Modelling steps

I Object:
I crystal structure.
I crystal orientation.
I crystal shape.

I Scattering & Diffraction:
I incident wave-function.
I evolution operator.
I exit wave-function.

I Image Formation:
I HRTEM: Transfer Function (TF) or Transmission Cross Coefficients

(TCC).
I HRSTEM: Optical Transfer Function (OTF).

I Image acquisition:
I characterisation of the Modulation Transfer Function (MTF) of the

detector.
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Modelling the object
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Evolution operator U (z, 0) depends on the object properties

1. Amorphous material or crystalline material.
2. Thin or thick.
3. Orientation (high or low symmetry [uvw]).

You might have to transform the unit cell in order to perform dynamical calculations1.

Si3N4 hexagonal
lattice.

Si3N4 orthorhombic
lattice.

Si3N4 orthorhombic
lattice x 2.

Pt catalyst on
amorphous carbone
film (9600 atoms).

Any model is considered a periodic unit cell independent of its complexity.

1See International Tables for Crystallography (1992) Vol. 1, Chapter 5.
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Atomic scattering amplitude
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The TDS (Thermal Diffuse Scattering) at large s (=sin(θ)) scales as ≈ Z 1.7. It explains
HAADF (High Angle Annular Dark Field) atomic column contrast.
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Atomic form factors

Atomic form factors have been tabulated by many authors:
1. Doyle-Turner and Smith-Burge.
2. E.J. Kirkland.
3. Peng-Ren-Dudarev-Whelan.
4. ...

Take care ASA of heavy atoms aren’t always tabulated properly.
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A extremely useful ASA tabulation including phonon and core loss absorption is due to
Weickenmeier-Kohl2.

2A. Weickenmeier, H. Kohl, Acta Cryst. A 47 (1991) 590.
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Atomic form factors

Crystal structure are defined by:
1. a, b, c, α, β, γ lattice parameters.
2. Space-group or symmetry operators.
3. Atoms positions (Symbol, x, y, z with 0 ≤ (x, y, z) < 1)

> 105 crystal structures provided by data bases (ICSD, Min. Soc. Ame., Cryst.
Open Database).

Useful severs:
www.minsocam.org
www.crystallography.net
www.cryst.ehu.es
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ICSD & AMS: data bases for crystal structures
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Scattering & diffraction
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Scattering: electron-matter interaction

V (r)

k0

kq

q

k0

An incident electron of wave vector ~k0 interacts with a solid of scalar potential V (~r). The wave
vector of the scattered electron is~kq =~k0 +~q where~q is the momentum transfered by the solid3.

Elastic scattering −→ ||~kq|| = ||~k0||.
3Magnetic and spin effects are ignored.
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Diffraction geometry: small angle approximation

Laue circle 
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Center of the Ewald sphere (C) and Center of the Laue Circle (CLC), projection of C onto the
zero order Laue zone. All reflections on the circle of radius χ are at exact Bragg condition.

Notice that the Bragg angles are pretty small (of the order a few o) and that consequently the
small angle approximation is quite good.
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Kinematical diffraction: < q|U(z , 0)|χ >

Figure: Model (Ge3N4). Figure: Kinematical diffraction Ge3N4, [001].

Kinematical diffraction assumes single scattering approximation, i.e. very thin crystals.
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Dynamical diffraction: < q|U(z , 0)|χ >

Dynamical scattering or multiple scattering models the fact that
electrons suffer multiple scattering events passing through the
crystal slab. It is mathematically modelled as:

< q|U(z , 0)|χ > =⇒ Fourier transform of object wavefunction

Dynamical scattering (many different approaches under small angle
approximation and elastic scattering). Including inelastic scattering
gives more complicated and computer intensive calculations.

One must read paper!
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Gratias & Portier: small angle & elastic scattering approximations

From Gratias and Portier4.
4D. Gratias and R. Portier, Time-Like Perturbation Method in High-Energy Electron Diffraction, Acta Cryst. A39 (1983) 576-584
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The two most employed calculation methods

All approximations are numerically equivalent, but perform best in particular
cases.
We will consider only 2 approximations:

I multislice approximation5.
I The Bloch-wave method6.

The multislice method models multiple scattering within the context of physical
optics7. It performs best when simulating crystalline or amorphous solids of large
unit cell or containing defects while the Bloch-wave method is adapted to the
calculation of crystalline solids of small unit observed in any [uvw] orientation.
The Bloch-wave method has also several advantages (speed, ease of use) for
simulating CBED, LACBED or PED patterns and for polarity and chirality
determination.

5J. Cowley and A.F. Moodie, Proc. Phys. Soc. B70 (1957) 486, 497 and 505.
6H. A. Bethe, Ann. Phys. 87 (1928), 55.
7J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, 1968.
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Multislice method

1
432

propagator

phase object

wavefunction

*

(IFT * FT)

The solid is sliced into thin sub-slices. The incident wave-function is transferred by the first slice
(diffraction) and propagated to the next one. The propagation is done within the Fresnel
approximation, the distance between the slices being 20 - 50 times the wavelength.

Ψ(i + 1) = [Ψ(i)PO(i)]⊗ FPi→i+1
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Multislice algorithm

2 steps:
I Diffractor: transfer by one slice ⇒ multiplication by phase object function (POF (~ρ)).
I Propagator: propagation between slices ⇒ convolution by the Fresnel propagator (is

nowadays performed by a FFT followed by a multiplication and an inverse FFT (FT−1,
multiplication, FFT)) (calculation error O(z)).

For improved multislice calculations (O(z2)) the wave-function is propagated over z/2, then
multiplied by the phase-object function of the slice and finally propagated again over z/2. Slices
do not need to have equal thicknesses.

Work best to simulate:
I Perfects crystals of large unit cell parameters8.
I Defects under the periodic continuation assumption9.

Is also used for:
I ADF image simulation in the ”Frozen Lattice” approximation10.

8K. Ishizuka, Acta Cryst. A33 (1977) 740-749.
9A.J. Skarnulis, Thesis, Arizona State University 1975.

10E.J. Kirkland, Advanced Computing in Electron ¡microscopy.
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Multislice: periodic continuation

One unit cell model. Periodic continuation model (2 x 2 unit
cells).

In order to avoid ”aliasing problems” during the multislice iterations the phase-object function
and the propagator function must be sampled properly and also be ”band-limited”.
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Example multislice: Pt catalyst

A

K0

A: catalyst model (9500 atoms)

B

B: HREM image (Jeol 400kV).

This simulation was performed with a phase-object function sampled on a 1024 x 1024 grid.
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Bloch wave method: z-independent potential
When the scattering potential is periodic, the eigenstates |j > of the propagating electrons are
Bloch waves. The hamiltonian of the system is projected on the eigenstates |j > with
eigenvalues γj (”anpassung” parameter).

Ĥ = ∑
j

γj |j >< j |

The evolution operator is then given by (since V = V (~ρ)):

Û(z , 0) = e−i Ĥz = ∑
j

e−iγj z |j >< j |

The wave-function at z developed on plane waves basis |q >:

Ψ(z) = ∑
q

φq(z)|q >

φq(z) =< q|Û(z , 0)|0 >= ∑
j

e−iγj z < q|j >< j |0 >

c∗j0 =< j |0 > and c j
q =< q|j >

where in usual notation c∗j0 and c j
q are the Bloch-wave excitations (component of the initial state

|0 > on |j >) and coefficients (component of reflection |q > on |j >) respectively11.
11C. Humphreys & R.M. Fisher, Bloch Wave Notation in Many-Beam Electron Diffration, Acta Cryst. A27 (1971) 42-45.
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Bloch wave method: applications

Simulation of:
I SAED (kinematical and dynamical).
I CBED (polarity).
I LACBED (specimen thickness, symmetry).
I PED (Precession Electron Diffraction).
I HRTEM.

Works best for small lattice parameters crystals12.

12Some more details in Appendix1.
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CBED: ZnTe [110]
Zn Te

ZnTe [110]

Figure: ZnTe [110]. Figure: Reflections (1 +
49), |χ >= 0.

Te

Figure: Bloch-wave 1
(Te 1s).

Zn

Figure: Bloch-wave 2
(Zn 1s).

Figure: Bloch-wave 5
(Te-Zn).

Figure: Bloch-wave 7
(Te-Zn).

Figure: Bloch-wave 8
(Te-Zn).

200

200

Figure: CBED (ZnTe
polarity).
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SAED: Diffraction pattern & specimen thickness

0 2 10
T [nm]20

In BFP diffraction pattern depends specimen thickness.

Goodness of dynamical diffraction
theories?
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LACBED: Si [001]

Figure: LACBED Si [001]: simulation. Figure: LACBED Si [001]: experimental (Web site EM
centre - Monash university, J. Etheridge).

Note that the experimental LACBED pattern is blurred (inelastic scattering and/or MTF of CCD
camera?).
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Image formation
I Abbe image formation.
I Transfer function.
I Perfect thin lens.
I Aberrations.
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Optical system

xo

z

SE

Ao Ai

xi

yo yi

An optical system produces the image Ai of a point source object Ao. Ao and Ai are said to be
conjugate. Ai is not a point since any optical system is diffraction limited. This limitation is
introduced by the entrance and exit pupils of the optical system.

Pierre StadelmannJEMS-SAASCH-3906 Saas-FeeSwitzerland HRTEM and STEM Image Simulation



Aberrations of optical systems: how to define them

Some light rays emitted by object point Ao do not reach the image
at point Ai .

Position of Ai −→ intersection of the reference light ray (non
deviated) and the image plane.

The image of a point source is a spot whose shape and intensity
depend of the quality of the optical system.

Two types of aberrations:
1. Monochromatic.
2. Chromatic (λ dependent).
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Pupils

y

z

DO PsPe

Ao Ai

SOe SOs

αo

Any optical system can be characterised by an entrance pupil Pe and an exit pupil Ps . The pupils
are the image of the opening aperture DO by the entrance and exit optical subsystems SOe and
SOs . What are Pe and Ps for a thin lens?
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Monochromatic aberrations

In order to evaluate the monochromatic aberrations one must
define a function characteristic of the optical system.

This function will depend on:
1. The selected reference planes.
2. The optical path followed by the light ray.
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Optical Path Length: OPL

I
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I Before PE the reference wavefront ΣPE is spherical (point source at O).
I After PS the reference wavefront ΣPS is spherical (converges towards I).

For a perfect optical system, both the entrance ΣPE and exit ΣPS wavefronts are spherical. The
Optical Path Length form O to I is independent of the path.
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Optical Path Difference (OPD): aberrations

β
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In the presence of aberrations the wavefront Σ
′

S is no more spherical. The
Optical Path Difference (distance between the deformed Σ

′

S and spherical
wavefront ΣS) introduces a phase shift δφ. With P ′ close to P = (xs , ys) on
reference sphere Σs , the OPD at P ′ = (i.e. OPL from P ′ to P) is given by
(Fermat principle):

W (xs , ys) = ni P ′P
ni refractive index of the medium −→ phase shift:

δφ = e2πıW (xs ,ys )
λ

Pierre StadelmannJEMS-SAASCH-3906 Saas-FeeSwitzerland HRTEM and STEM Image Simulation



Transverse geometric aberrations: ~ε
The transverse geometric aberrations are proportional to d

dθ wavefront
aberrations13:

εx = − f
ni

∂W
∂xs

εy = − f
ni

∂W
∂ys

f focal length.

The OPD’s introduced by all the aberrations of the imaging system are collected
in a function χ(~u) and the phase shift is14:

T̃ (~u) = eıχ(~u)

T̃ (~u) has been first employed by Abbe in his description of image formation
(1866).

13P(xs , ys) on the spherical reference wavefront can be characterised by the radial angle θ.
14The angle θ corresponds (through Bragg law) to a spatial frequency ~u, i.e. a distance in the back focal plane.
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Paraxial optics: principal rays

OP

z

f f

FFP BFP

o
i

Fi

O

Fo
α

q

a b

IP

Principal rays of paraxial optics. Reflection (plane wave) making an angle α,
where α = 2θB, corresponds to spatial frequency u.
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Microscope modelling: Abbe image formation theory
Objective lens is modelled as a thin lens that brings Fraunhofer diffraction pattern at finite
distance (i.e. in its Back Focal Plane).
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S 1

S -1

Object

Back
Focal
Plane

 Scattering
         &
Interference

Ψο(x) Ψο(u) T(u)
~ ~

u

-u

Fraunhofer approximation
Fourier Transform

Image
Plane

Fourier Synthesis

Ψi(x)
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Transfer by objective lens: < q′|T̃ (q′, q)|q >

Image forming system has 2 properties (Abbe theory):
I Linear.
I Space invariant.

Coherence of illumination:
I Source size (spatial coherence).
I Energy spread (temporal coherence).

Partial coherence (always the case): T̃ (q′, q) : transmission cross-coefficients
=⇒ is approximated by a transfer function T̃ (~u) and several envelope functions
(attenuation of a range of spatial frequencies)..
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Transfer Function T̃ (~u) and Optical Transfer Function ÕTF (~u)

Two cases:

→ TEM (T̃ (~u): Transfer Function):

Ψ̃i(~u) = Ψ̃o(~u)T̃ (~u)
Ψi(~x) =

∫
Ψ̃o(~u)T̃ (~u)e2πı~u·~xd~u

→ STEM (ÕTF (~u) = T̃ (~u)⊗ T̃ (−~u): Optical Transfer Function):
I(~x) = 〈Ψi(~x ; t)Ψ∗i (~x ; t)〉
Ψi(~x ; t) = Ψo(~x ; t)⊗ T (~x)
I(~x) = 〈[Ψo(~x ; t)⊗ T (~x)][Ψ∗o(~x ; t)⊗ T ∗(~x)]〉 (⊗ convolution.)
I(~x) = [T (~x)T ∗(~x)]⊗ 〈Ψo(~x ; t)Ψ∗o(~x ; t)〉 (T (~x) is time independent.)
〈Ψo(~x ; t)Ψ∗o(~x ; t)〉 = |Ψo(~x)|2 (complete spatial incoherence)
I(~x) = |Ψo(~x)|2⊗ [T (~x)T ∗(~x)]
I(~x) = Io(~x)⊗OTF (~x)
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Optical Path Length: underfocus

z
O

a b

f  f Δf

Αo
Αi Α'i

OPL’ > OPL

Δf

b2 Δf
f2Δb =

Underfocus weakens the objective lens, i.e. increases f. As a consequence the OPL from Ao to
A′i is larger:

e2πi ∆f λ(~q·~q)
2
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Transfer function T (~q)

T (~q) = e iχ(~q) = cos(χ(~q)) + i sin(χ(~q))︸ ︷︷ ︸
Contrast transfer function

χ(~q) = π

[
W20 λ~q.~q + W40

λ3 (~q.~q)2

2 + ...
]

Where:
I W20 : defocus (z)
I W40: spherical aberration (Cs)
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Wave-front aberrations to 6th order (cartesian coordinates)

{z , π (u2 + v 2) λ} (defocus)
{W (1, 1), 2π(u cos(φ(1, 1)) + v sin(φ(1, 1)))}
{W (2, 2), πλ((u − v)(u + v) cos(2φ(2, 2)) + 2uv sin(2φ(2, 2)))}{

W (3, 1), 2
3π (u2 + v 2) λ2(u cos(φ(3, 1)) + v sin(φ(3, 1)))

}{
W (3, 3), 2

3πλ2 (u (u2− 3v 2) cos(3φ(3, 3))− v (v 2− 3u2) sin(3φ(3, 3)))
}{

W (4, 0), 1
2π (u2 + v 2)

2
λ3
}
(3rd order spherical aberration or C3){

W (4, 2), 1
2π (u2 + v 2) λ3((u − v)(u + v) cos(2φ(4, 2)) + 2uv sin(2φ(4, 2)))

}{
W (4, 4), 1

2πλ3 ((u4− 6v 2u2 + v 4) cos(4φ(4, 4)) + 4u(u − v)v(u + v) sin(4φ(4, 4)))
}{

W (5, 1), 2
5π (u2 + v 2)

2
λ4(u cos(φ(5, 1)) + v sin(φ(5, 1)))

}{
W (5, 3), 2

5π (u2 + v 2) λ4 (u (u2− 3v 2) cos(3φ(5, 3))− v (v 2− 3u2) sin(3φ(5, 3)))
}{

W (5, 5), 2
5πλ4 (u (u4− 10v 2u2 + 5v 4) cos(5φ(5, 5)) + v (5u4− 10v 2u2 + v 4) sin(5φ(5, 5)))

}{
W (6, 0), 1

3π (u2 + v 2)
3

λ5
}
(5th order spherical aberration or C5){

W (6, 2), 1
3π (u2 + v 2)

2
λ5((u − v)(u + v) cos(2φ(6, 2)) + 2uv sin(2φ(6, 2)))

}{
W (6, 4), 1

3πλ5 ((u6− 5v 2u4− 5v 4u2 + v 6) cos(4φ(6, 4)) + 4uv (u4− v 4) sin(4φ(6, 4)))
}{

W (6, 6), 1
3πλ5 ((u6− 15v 2u4 + 15v 4u2− v 6) cos(6φ(6, 6)) + 2uv (3u4− 10v 2u2 + 3v 4) sin(6φ(6, 6)))

}
jems describes wave-front aberrations to order 8.
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Wave-front aberrations to order 8
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Contrast transfer function: sin(χ(~q))

The transfer function of the objective lens in the absence of lens current and accelerating voltage
fluctuations (Scherzer defocus). The (111) and (022) reflections of Si are phase shifted by
−π

2 → black atomic columns.
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HRTEM image intensity: WPOA

In the Weak Phase Object Approximation under optimum transfer conditions the image intensity
I(~x) is:

I positive Cs (black atomic columns)

I(~x) ∼ 1− 2σVp(~x)

I negative Cs (white atomic columns)

I(~x) ∼ σVp(~x)

Where:
Vp(~x) : projected potential

σ : electron matter interaction constant
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HRTEM image depends on specimen thickness and object defocus
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Si [001] images map: contrast dependence of defocus & thickness

Defocus
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s

HREM map does not include the Modulation Transfer Function (MTF) of the detector.
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Details15

How to reach a perfect match between experimental and simulated
images?

1. Models (crystal, elastic, inelastic scattering, dynamical theory, imaging).
2. Image acquisition.
3. Environment.
4. ...

How to define a perfect match?

15The devil is in the details!
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Details

I Object
I → Atomic scattering amplitude below 50 kV?
I → Potential by DFT calculation?
I ...

I HRTEM → Phase of diffracted beams evolves with specimen thickness.
I HRTEM → MTF of image acquisition system (Stobbs factor?).
I HRTEM / HRSTEM → Electron channeling depends on atomic column

content.
I HRTEM / HRSTEM → Aberrations of optical system.
I HRTEM → Inelastic scattering (J.M. Cowley, E.J. Kirkland, D. van Dyck,

A. Rosenaurer, K. Ishizuka, Z.L. Wang, H. Rose, H. Mueller, L. Allen, ...).
I HRTEM / HRSTEM → Drift, vibration, Johnson-Nyquist noise16, ...
I ...

16S. Uhlemann, H. Mueller, P. Hartel, J. Zach & M. Haider, Phys. Rev. Lett. 111 (2013) 046101.
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HRTEM problem: amplitude and phase of diffracted beams

Note that phase of diffracted beam is π
2 out-of-phase with respect

to transmitted beam.
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HRTEM problem: CCD MTF (Gatan MSC 1K x 1K, 24 µm)
To make quantitative comparison with experimental HRTEM images the MTF of the detector
must be introduced in the simulation.

Si (220)

Figure: At high magnification Si (220) planes
imaged with high contrast.

Si (220)

Figure: At low magnification Si (220) planes
imaged with low contrast.

For quantitative comparison always use highest possible magnification (or include CCD MTF in
simulations)!
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CCD MTF: high magnification ( 900 kx)

A

Figure: A: Si [001] simulation.

B

Figure: B: Si [001], simulation + CCD MTF.
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CCD MTF: low magnification (225 kx)

A

Figure: A: Si [001] simulation.

B

Figure: B: Si [001], simulation + CCD MTF.
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HRTEM / HRSTEM problem: electron channeling (ZnTe [110] )

z

0 Te Zn

Figure: ZnTe [110] wave function intensity.

Channeling explains several features of HRTEM and STEM images (i.e. appearance /
disappearance of contrast of impurities).
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Does Cs and Cc correction solves all imaging problems?
Example: CdCu2, visibility of the 3 Cu atomic columns.

2 Cd

3 Cu

2 Cu

HRTEM image simulation conditions
Acc. [kV] Cs [mm] C5[mm] Cc [mm] ∆E [eV ] Z [nm] ∆z [nm]

300 -0.008 30 0.5 0.6 -4.9 1
300 -0.008 30 0.1 0.2 -2.0 1

Dynamical scattering effects are not affected by Cs and/or Cc corrected TEM!
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CdCu2[001]: imaging parameters set 1

Thickness

Defocus

Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.
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CdCu2[001]: imaging parameters set 2

Thickness

Defocus

Improving Cc and ∆E does not affect the visibility of 3 the Cu atomic columns. It depends on
specimen thickness (and defocus indeed). Visibility of the 3 Cu atomic columns is always
affected by dynamical scattering. Only extremely thin specimen (≤ 10 nm) will allow faithful
imaging of crystal projected potential.
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HRTEM or STEM HAADF imaging

High Angle Annular Dark Field (HAADF): inelastically scattered electrons.
When simulation is necessary how to simulate images?
Numerous approximations:

I Simple projected + convolution with probe intensity: no channeling effect (Weak Object
Approximation).

I Multislice calculation: channeling + inelastic scattering (absorption potential) +
convolution with probe intensity.

I Frozen lattice (phonon) approximation: atoms of super-cell displaced out of equilibrium
position, probe scanned on imaged area, intensity collected by annular detector.

I Pennycook, Nellist, Ishizuka, Shiojiri, Allen, Wang, Rosenauer, van Dyck, ...
Except the first 2 methods, simulation time expensive (luxury?). Approximations (necessity) may
suffice...
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HAADF: graphene

Figure: Proj. pot. approx. Figure: Channeling
calculation.

Figure: Frozen lattice 5 conf. Figure: Frozen lattice 10
conf.
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HRSTEM - HRTEM comparison: graphene with add atoms

Si

C

Figure: Graphene with Si in 6 C ring, Si substitutional and 2 C column.
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Graphene HAADF (100 kV, 70 -150 mrad)

Figure: Frozen lattice (∼400 s). Figure: Channeling (∼2 s).

One Si shows more contrast than 2 C atoms (i ∼ Z 2) : 142

compared to ∼ 2× 62.
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Graphene HRTEM (100 kV, Cs − 0.033mm)

Figure: Weak phase object app., Cc = 0.5mm Figure: Multislice, Cs = −0.033mm, Cc = 0, no
thermal magnetic noise.

HRTEM does not display the strong contrast difference between
one Si and two C as given by HAADF.
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Quantitative HR(S)TEM

Image simulation still necessary for quantitative work17.

Exit wave function recovery possible using:
I Focal series reconstruction.
I Transport of intensity equation.

Crystal structure determination not (yet) possible, inverse
dynamical scattering cannot be solved in general.

17K. W. Urban, Science 321 (2008) 506.
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Thanks for your attention!
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HRTEM / HRSTEM problem: aberrations of optical system

Reaching 0.05 nm resolution sets very strong conditions on aberrations correction.

Figure: Aberration figure of C34(0.5µm), phase jump
at π

4 .
Figure: Optical Transfer Function.

Note that Optical Transfer Function (HRSTEM) transfers higher spatial frequencies than
Ccoherent Transfer Function (HRTEM).
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HAADF: graphene

Figure: Probe affected
by 2 fold astigmatism.

Figure: Probe affected
by 3 fold astigmatism.

Figure: Probe affected
by coma.

Figure: Corrected probe
(best defocus).

Figure: HAADF
projected potential
approximation.

Figure: HAADF
multislice calculation
(simple).

Figure: Frozen phonons
5 configurations.

Figure: Frozen phonons
10 configurations.
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Appendix 1: Dynamical theory of elastic scattering of high energy
electron

We aim to understand in details multiple elastic scattering of electrons by crystals.
I High energy electron (eE).
I Periodic interaction potential V (~r).
I Time independent flux of incident electrons.

The fundamental equation of electron elastic scattering by a potential Vv [Volt ](positive inside a
crystal) in the approximation of a stationary flux of electrons of a given energy e E is the
Schrödinger equation18:

4Φ(~r) + 2me
h̄2 [E + Vv(~r)]Φ(~r) = 0

With a change of notation its is written as:

[4+ 4π2K 2
i ] Φ(~r) = −4π2Vv(~r) Φ(~r)

Where the wavevector |~Ki | of the incident electrons is given by:

|Ki | =
√

2meE
h

and
m = γ m0

18C. Humphreys, The scattering of fast electrons by crystals, Rep. Prog. Phys. 42 (1979) 1825-1887.
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Schrödinger equation

The Laplacian 4 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is written as: 4ρ +
∂2

∂z2 . As a result, [4+ ...]e2πıkzzΨ(ρ; z)
is given by: [4ρ +

∂2

∂z2 + ...]e2πıkzzΨ(ρ; z).
Performing the z-differentiation:

∂2

∂z2e2πıkzzΨ(ρ; z) = e2πıkzz [−4π2k2
z + 4πıkz

∂

∂z +
∂2

∂z2 ]Ψ(ρ; z)

Inserting the last expression and dropping the term e2πıkz z :

[4ρ + 4π2(K 2
i − k2

z + V (ρ; z)) + 4πıkz
∂

∂z +
∂2

∂z2 ]Ψ(ρ; z) = 0

Since K 2
i = k2

z + χ2:

[4ρ + 4π2χ2 + 4π2V (ρ; z) + 4πıkz
∂

∂z +
∂2

∂z2 ]Ψ(ρ; z) = 0

Rearranging the last equation:

ı
∂Ψ(ρ; z)

∂z = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z) + ∂2

∂z2 ]Ψ(ρ; z)
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Fundamental equation

ı
∂Ψ(ρ; z)

∂z = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z) + ∂2

∂z2 ]Ψ(ρ; z)

The term |∂
2Ψ(ρ;z)

∂z2 | being much smaller than |kz
∂Ψ(ρ;z)

∂z | we drop it (this is equivalent to neglect
backscattering).
Fundamental equation of elastic scattering of high energy mono-kinetic electrons with a
potential within the approximation of small angle scattering:

ı
∂

∂z Ψ(ρ; z) = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z)]Ψ(ρ; z)

Time dependent Schrödinger equation =⇒ solution by many methods of quantum mechanics!
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Remarks
I The approximations of the fundamental equation are equivalent to assume that the

scattering potential is small compared to the accelerating potential and that kz varies only
slightly with z . It is in fact a quite good approximation, since the mean crystal potential is
of the order of 10− 20 V .

I Electron backscattering is neglected, the electron are moving forwards.
I The fundamental equation is actually equivalent to a 2-dimensional Schrödinger equation

(ρ = {x , y}) where z plays the role of time. The system evolution is causal, from the past
to the future.

Fundamental equation in Hamiltonian form:

ı
∂

∂z Ψ = H ψ

where:
H = − 1

4πkz
[4ρ + 4π2χ2 + 4π2V (ρ; z)] = Ho +

4π2V (ρ; z)
4πkz

A fundamental postulate of quantum mechanics19 says that the evolution operator obeys the
equation:

ı
∂

∂z U(z , 0) = H(ρ; z) U(z , 0)

19R. Shankar, Principles of Quantum Mechanics (1994) Plenum Press, New York and London.
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Causal evolution operator

U(z , 0): unitary operator (the norm of |Ψ > is conserved), in general not directly integrable
=⇒ approximations.
U(z , 0) can be directly integrated only when H(ρ; z) and ∂

∂zH(ρ; z) commute. In that case the
general solution is20:

U(z , 0) = e−ı
∫ z

0 H(τ) dτ

H(ρ; z) and ∂
∂zH(ρ; z) commute when:

I V (ρ; z) does not depend on z, i.e. V (ρ; z) = V (ρ)(perfect crystal).
I V (ρ; z) can be neglected (free space propagation).
I H(ρ; z) is approximated by it potential term (phase object).

Three approximations are available in jems:
I Multislice method.
I Bloch wave method.
I Howie-Whelan column approximation.

20A.Messiah, Mecanique quantique (1964) Dunod Paris.
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