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HRTEM and HRSTEM imaging

The theory of diffraction and image formation has been fully developed as early as the 19th

century (Augustin Jean Fresnel (1788-1827), Joseph von Fraunhofer (1787-1826), Ernst Karl
Abbe (1840-1905)1) and provides the mathematical tools necessary to understand diffraction and
image formation in electron microscopy. Some recommended books are:

I J.M. Cowley, Diffraction Physics.
I P.B. Hirsch, A. Howie, R.B. Nicholson, W.D. Pashley & M.I. Whelan, Electron Microscopy

of Thin Crystals.
I J.-P. Morniroli, Large-Angle Convergent-Beam Electron Diffraction.
I S.J. Pennycook & P.D. Nellist, Scanning Transmission Electron Microscopy.
I J.C.H. Spence, High Resolution Electron Microscopy .
I Z.L. Wang, Elastic and Inelastic Electron Scattering in Electron Diffraction and Imaging.

Recommended articles:
I J.M. Cowley & A.F. Moodie, Acta Cryst. 10, (1957) 609-619.
I D. Gratias & R. Portier, Acta Cryst. A39 (1983) 576-584.
I K. Ishizuka, Ultramicroscopy 5 (1980) 55-65, Ultramiscoscopy 90 (2002) 71-83.
I D. Van Dyck, Phys. Status Solidi 72 (1975) 321-336.

1J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill Book Company (1968).
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HR(S)TEM image simulation

The theory of image formation and diffraction is the foundation of HR(S)TEM diffraction and
image simulation. These simulations are very often necessary to properly interpret and analyse
the experimental images.

I Simple structure: Co
I More complicated structure: MgZn2
I Complicated structure: Cr3Ni5Si2

The first structure is very simple but hexagonal. In hexagonal crystals (hkl) plane normals are
not parallel to [uvw] directions where (h=u, k=v & l=w) (except (001) // [001]).
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Simple structure: Co

When simple structures are imaged, image simulation may not be necessary at all. For example
looking at Co (P63/mmc, magnetic!), model structure, projected potential, SAED, HRTEM are
simple (and straight forward to interpret?):

a

b

Model structure
Cobalt, [001].

Projected potential
Co [001]

Selected Area
Electron Diffraction
(SAED) Co [001].

HRTEM image Co
[001], Titan negative

Cs.
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More complicated structure: MgZn2

When moderately complicated structures are imaged, image simulation may still not be
necessary. For example looking at MgZn2 (P63/mmc), model structure, projected potential,
SAED, HRTEM are simple (SAED straight forward to interpret?):

Model structure
MgZn2, [001].

Projected potential
MgZn2 [001]

Selected Area
Electron Diffraction

(SAED) MgZn2
[001].

HRTEM image
MgZn2 [001], Titan

negative Cs.
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Co observed in [120] projection (Weber notation [10-10])

Model structure
Cobalt, [120].

Projected potential
Co [120]

Selected Area
Electron Diffraction
(SAED) Co [120].

HRTEM image Co
[120], Titan negative

Cs.
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MgZn2 observed in [120] projection (Weber notation [10-10])

Model structure
MgZn2, [120].

Projected potential
MgZn2 [120]

Selected Area
Electron Diffraction

(SAED) MgZn2
[120].

Figure: HRTEM image
MgZn2 [120], Titan
negative Cs.
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Complicated structure: Cr3Ni5Si2 observed in [001] projection

Model structure Cr3Ni5Si2, [001]. Selected Area Electron Diffraction
(SAED) Cr3Ni5Si2 [001]
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Cr3Ni5Si2 observed in [001] projection

Projected potential Cr3Ni5Si2 [001]. HRTEM image Cr3Ni5Si2 [001], Titan
negative Cs.
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Cr3Ni5Si2 observed in [001] projection
Imaging a thicker crystal or changing defocus modify (in general) the HRTEM images (where are
the atomic columns?).

HRTEM image Cr3Ni5Si2 [001], thickness
10 nm, defocus -8.2 nm.

HRTEM image Cr3Ni5Si2 [001], thickness
10 nm, defocus 8.2 nm.
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Cr3Ni5Si2 observed in [001] projection
Imaging a thicker crystal or changing defocus modify (in general) the HRTEM images (where are
the atomic columns?).

HRTEM image Cr3Ni5Si2 [001], thickness
10 nm, defocus -8.2 nm.

HAADF image Cr3Ni5Si2 [001], thickness
10 nm.
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Cr3Ni5Si2 observed in [001] projection
Imaging a thicker crystal or changing defocus modify (in general) the HRTEM images (where are
the atomic columns?).

Projected potential Cr3Ni5Si2 [001]. HAADF image Cr3Ni5Si2 [001], thickness
10 nm.
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Theory of image formation and diffraction in the electron microscope
We need models, (good) approximations.

1. Models
1.1 Crystal or ...

I Lattice parameters.
I Symmetries (space-group, regular point system).
I Atoms position.
I Orientation, ([uvw] zone axis indices, (hkl) Laue circle center indices with u h + v k + w l = 0 ).
I Shape (thickness, defect, ...).

1.2 Microscope
I Source coherence (i.e. size, energy spread).
I Accelerating voltage.
I Objective lens properties (Cs: spherical aberration coefficient, Cc: chromatic aberration coefficient, ...).

1.3 Detector: Modulation Transfer Function (MTF).

2. Approximations for diffraction
2.1 Elastic scattering (under small angle scattering approximation, i.e. acc. voltage ≥ 50 kV):

I Kinematical: single scattering event.
I Dynamical: multiple scattering events.

2.2 Inelastic scattering:
I Single inelastic scattering.
I Multiple inelastic scattering.
I Frozen lattice or frozen phonon.

3. Approximations for image formation
3.1 Abbe imaging theory (transmission cross-coefficients or transfer function + envelopes).
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Models

Specimen crystalline, amorphous, both?

Books on crystallography that you may find useful:
I D.E. Sands, Introduction to Crystallography, Dover Books on Chemistry.
I D.E. Sands, Vectors and Tensors in Crystallography, Dover Publications Inc.
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Models: specimen
Models are not necessarily crystalline.

CoCr2O4 (cubic, F d -3 m,
3 atoms).

Si

C

Graphene sheet with add
atoms (448 atoms).

A

K0

Pt catalyst (Pt cube
octahedron on amorphous

carbon film, 10’000
atoms).

A model is a box of parameters (a, b, c, α, β, γ) with atoms at (x,y,z) such that
0.0 ≤ (x , y , z) < 1.0. The symmetries (space-group) helps defining the structure, the
extinctions, etc2.

2Wrong models do not provide reliable HRTEM or HRSTEM simulated images.
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Models: Paraxial optics and principal rays

OP

z

f f

FFP BFP

o
i

Fi

O

Fo
α

q

a b

IP

Principal rays of paraxial optics. Reflection (plane wave) making an angle α,
where α = 2θB, corresponds to spatial frequency u.
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Models: the electron microscope (paraxial optics or gaussian optics)

z

BFP
x

y

ok

IP
OP

PW

PW: incident Plane Wave, OP: Object Plane, BFP: Back Focal Plane, IP: Image Plane.
Only objective lens is modelled and axial aberrations considered34.

3The objective lens is the first imaging lens and its lateral magnification Gl is very large (HRTEM).
4Angular compression Ga is the inverse of lateral magnification Gl (GlGa = 1).
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Approximations

Electron diffraction
I Small angle elastic scattering5.

I Kinematical diffraction (single scattering event).
I Dynamical diffraction (multiple scattering events).

I Inelastic scattering.
I Single scattering event.
I Multiple scattering events.

Imaging
I Coherent illumination (mono kinetic electrons and point source).
I Incoherent illumination (scanning).
I Partially coherent illumination.

I Coherent illumination + attenuation envelopes.
I Transmission cross-coefficients.

5Small angle scattering has been shown to be a good approximation for electrons of energy larger than 50 KeV.
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Approximations: elastic scattering

0 5 10 15 20
nm-10.00

0.05

0.10

0.15

0.20

0.25
ASR � nm

C ::Weickenmeier-Kohl Hphonon + coreL

Atomic Scattering Amplitude (carbon),
red: elastic, green: core absorption, blue:

TDS (Thermal Diffuse Scattering).

V (r)

k0

kq

q

k0

Electrons interact with
the crystal potential

V (~r).
Scattering:

~kq =~ko +~q
Elastic scattering:

||~kq|| = ||~ko||
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Approximations: Abbe image formation

z

f

S 1

S -1

Object

Back
Focal
Plane

 Scattering
         &
Interference

Ψο(x) Ψο(u) T(u)
~ ~

u

-u

Fraunhofer approximation
Fourier Transform

Image
Plane

Fourier Synthesis

Ψi(x)

The objective lens changes the phase relationship between the transmitted and diffracted beams.
Moreover not all diffracted beams are transmitted, due to its small acceptance angle. High
spatial frequencies (i.e. beams diffracted at large angles are damped due to partial spatial and
temporal coherence, electronic noise, mechanical vibrations or drift.
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Approximations: transfer function T̃ (~u)

z

BFP
x

y

ok

IP
OP

PW

The electron microscope transfer is modelled by a transfer function T̃ (~u) that acts only in its
Back Focal Plane (BFP). The BFP is the plane where the Fourier transform of the object wave
function Ψ̃o(~u) is formed. In the Image Plane, the image intensity is Ψi(~x) Ψi(~x)∗ i.e. the
modulus square of the image wave function Ψi(~x).
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Mathematics of the theory of image formation and diffraction

z

BFP
x

y

ok

IP
OP

PW

|χ>
Û(z, 0)|χ> <q|Û(z, 0)|χ>

Σq Σq’ <ρ|q’><q’|T(q’,q)|q><q|Û(z, 0)|χ>

Fourier
Transform

TransferFourier
Synthesis
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Image wave function: |Ψi >

|χ > =⇒ incident wave function

|Ψi >=
q′

∑ < ρ|q′ >︸ ︷︷ ︸
Fourier synthesis

q
∑ < q′|T (q′, q)|q >︸ ︷︷ ︸

Objective lens transfer

< q|U(z , 0)|χ >︸ ︷︷ ︸
Fourier transform

Assuming that the potential is z independent, the evolution operator U(z , 0)
depends on the Hamiltonian H(~ρ, z) of the system ”crystal + incident electron”
(where ~ρ are the (x, y) coordinates in a plane perpendicular to the optical axis
Oz of the microscope):

U(z , 0) = exp−i
∫ z

0 H(~ρ,z)dz

The main problem of high-energy electron diffraction and imaging is to
determine U(z , 0)6.

6First solution by Hans Albrecht Bethe, Theory of the Diffraction of Electrons by Crystals, Ann. Phys. 87 (1928) 55-129.
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Gratias & Portier: small angle & elastic scattering approximations

From Gratias and Portier7.
7D. Gratias and R. Portier, Time-Like Perturbation Method in High-Energy Electron Diffraction, Acta Cryst. A39 (1983) 576-584
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Transfer by the objective lens: < q′|T̃ (q′, q)|q >

Image forming system S has 2 properties (Abbe theory)8:
I Linear.
I Space invariant.

8Ψi(~x) = S{Ψo(~x)}.
Pierre StadelmannJEMS-SAASCH-3906 Saas-FeeSwitzerland Theory of image formation and diffraction



Linearity

S{a1Ψ1
o(~x) + a2Ψ2

o(~x)} = a1S{Ψ1
o(~x)}+ a2S{Ψ2

o(~x)}
S{a1Ψ1

o(~x) + a2Ψ2
o(~x)} = a1Ψ1

i (~x) + a2Ψ2
i (~x)

Ψo(~x) =
∫ ∞

−∞
Ψo(~u)δ(~x −~u)d~u

Ψi(~x) = S
{∫ ∞

−∞
Ψo(~u)δ(~x −~u)d~u

}
Ψi(~x) =

∫ ∞

−∞
Ψo(~u)S{δ(~x −~u)}d~u

Impulse response of the optical system T (~x ;~u):

T (~x ;~u) = S{δ(~x −~u)}
The effects of the optical system’s elements (lenses, apertures, ...) is known when the images of
the point sources of Po are specified.
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Space invariance: invariance by translation

Space invariance is realised when the image of a point source does not depend on its position
in the object plane. When the point source is translated in the object plane, its image moves
similarly in the image plane.

T (~x ;~u) = T (~x −~u)
The image function (complex) Ψi(~x) is consequently given by a convolution integral of the
object function Ψo(~u) and the point spread function T (~x) of the optical system:

Ψi(~x) =
∫ ∞

−∞
Ψo(~u)T (~x −~u)d~u = Ψo(~x)⊗ T (~x)

Its Fourier transform is:

Ψ̃i(~h) = Ψ̃o(~h)T̃ (~h)
Abbe image formation theory defines T̃ (~h) by means of Optical Path Differences (OPD).
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Remark: Transfer Function T̃ (~u) and Optical Transfer Function
ÕTF (~u)

→ TEM (T̃ (~u): Transfer Function):

Ψ̃i(~u) = Ψ̃o(~u)T̃ (~u)
Ψi(~x) =

∫
Ψ̃o(~u)T̃ (~u)e2πı~u·~xd~u

→ STEM (ÕTF (~u) = T̃ (~u)⊗ T̃ (−~u): Optical Transfer Function):

I(~x) = 〈Ψi(~x ; t)Ψ∗i (~x ; t)〉
Ψi(~x ; t) = Ψo(~x ; t)⊗ T (~x)
I(~x) = 〈[Ψo(~x ; t)⊗ T (~x)][Ψ∗o(~x ; t)⊗ T ∗(~x)]〉 (⊗ convolution.)
I(~x) = [T (~x)T ∗(~x)]⊗ 〈Ψo(~x ; t)Ψ∗o(~x ; t)〉 (T (~x) is time independent.)
〈Ψo(~x ; t)Ψ∗o(~x ; t)〉 = |Ψo(~x)|2 (complete spatial incoherence)
I(~x) = |Ψo(~x)|2⊗ [T (~x)T ∗(~x)]
I(~x) = Io(~x)⊗OTF (~x)
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Perfect optical system

xo

z

SE

Ao Ai

xi

yo yi

An optical system produces the image Ai of a point source object Ao. Ao and Ai are said to be
conjugate. Ai is not a point since any optical system is diffraction limited. This limitation is
introduced by the entrance and exit pupils of the optical system.
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Aberrations of optical systems: how to define them

Some light rays emitted by object point Ao do not reach the image
at point Ai .

Position of Ai −→ intersection of the reference light ray (non
deviated) and the image plane.

The image of a point source is a spot whose shape and intensity
depend of the quality of the optical system.

Two types of aberrations:
1. Monochromatic.
2. Chromatic (λ dependent).

Pierre StadelmannJEMS-SAASCH-3906 Saas-FeeSwitzerland Theory of image formation and diffraction



Pupils

y

z

DO PsPe

Ao Ai

SOe SOs

αo

Any optical system can be characterised by an entrance pupil Pe and an exit pupil Ps . The pupils
are the image of the opening aperture DO by the entrance and exit optical subsystems SOe and
SOs . What are Pe and Ps for a thin lens?
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Monochromatic aberrations

In order to evaluate the monochromatic aberrations one must
define a function characteristic of the optical system.

This function will depend on:
1. The selected reference planes.
2. The optical path followed by the light ray.
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Optical Path Length: OPL

I

z

P
E

P
S

O

Σ
PSΣ

PE

-y
e

y
s

-y
s

y
e

I Before PE the reference wavefront ΣPE is spherical (point source at O).
I After PS the reference wavefront ΣPS is spherical (converges towards I).

For a perfect optical system, both the entrance ΣPE and exit ΣPS wavefronts are spherical. The
Optical Path Length form O to I is independent of the path.
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Optical Path Difference (OPD): aberrations

β
oO

y
s

z
s

P

I
z

I'

Σ
E

Σ
S

C

Σ'
S

P'

u

β
i

In the presence of aberrations the wavefront Σ
′

S is no more spherical. The
Optical Path Difference (distance between the deformed Σ

′

S and spherical
wavefront ΣS) introduces a phase shift δφ. With P ′ close to P = (xs , ys) on
reference sphere Σs , the OPD at P ′ = (i.e. OPL from P ′ to P) is given by
(Fermat principle):

W (xs , ys) = ni P ′P
ni refractive index of the medium −→ phase shift:

δφ = e2πıW (xs ,ys )
λ
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Transverse geometric aberrations: ~ε
The transverse geometric aberrations are proportional to d

dθ wavefront
aberrations9:

εx = − f
ni

∂W
∂xs

εy = − f
ni

∂W
∂ys

f focal length.

The OPD’s introduced by all the aberrations of the imaging system are collected
in a function χ(~u) and the phase shift is10:

T̃ (~u) = eıχ(~u)

T̃ (~u) has been first employed by Abbe in his description of image formation
(1866).

9P(xs , ys) on the spherical reference wavefront can be characterised by the radial angle θ.
10The angle θ corresponds (through Bragg law) to a spatial frequency ~u, i.e. a distance in the back focal plane.
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Optical Path Length: underfocus

z
O

a b

f  f Δf

Αo
Αi Α'i

OPL’ > OPL

Δf

b2 Δf
f2Δb =

Underfocus weakens the objective lens, i.e. increases f. As a consequence the OPL from Ao to
A′i is larger:

e2πi ∆f λ(~q·~q)
2
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Transfer function T (~q)

T (~q) = e iχ(~q) = cos(χ(~q)) + i sin(χ(~q))︸ ︷︷ ︸
Contrast transfer function

χ(~q) = π

[
W20 λ~q.~q + W40

λ3 (~q.~q)2

2 + ...
]

Where:
I W20 : defocus (z)
I W40: spherical aberration (Cs)
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Wave-front aberrations to 6th order (cartesian coordinates)

{z , π (u2 + v 2) λ} (defocus)
{W (1, 1), 2π(u cos(φ(1, 1)) + v sin(φ(1, 1)))}
{W (2, 2), πλ((u − v)(u + v) cos(2φ(2, 2)) + 2uv sin(2φ(2, 2)))}{

W (3, 1), 2
3π (u2 + v 2) λ2(u cos(φ(3, 1)) + v sin(φ(3, 1)))

}{
W (3, 3), 2

3πλ2 (u (u2− 3v 2) cos(3φ(3, 3))− v (v 2− 3u2) sin(3φ(3, 3)))
}{

W (4, 0), 1
2π (u2 + v 2)

2
λ3
}
(3rd order spherical aberration or C3){

W (4, 2), 1
2π (u2 + v 2) λ3((u − v)(u + v) cos(2φ(4, 2)) + 2uv sin(2φ(4, 2)))

}{
W (4, 4), 1

2πλ3 ((u4− 6v 2u2 + v 4) cos(4φ(4, 4)) + 4u(u − v)v(u + v) sin(4φ(4, 4)))
}{

W (5, 1), 2
5π (u2 + v 2)

2
λ4(u cos(φ(5, 1)) + v sin(φ(5, 1)))

}{
W (5, 3), 2

5π (u2 + v 2) λ4 (u (u2− 3v 2) cos(3φ(5, 3))− v (v 2− 3u2) sin(3φ(5, 3)))
}{

W (5, 5), 2
5πλ4 (u (u4− 10v 2u2 + 5v 4) cos(5φ(5, 5)) + v (5u4− 10v 2u2 + v 4) sin(5φ(5, 5)))

}{
W (6, 0), 1

3π (u2 + v 2)
3

λ5
}
(5th order spherical aberration or C5){

W (6, 2), 1
3π (u2 + v 2)

2
λ5((u − v)(u + v) cos(2φ(6, 2)) + 2uv sin(2φ(6, 2)))

}{
W (6, 4), 1

3πλ5 ((u6− 5v 2u4− 5v 4u2 + v 6) cos(4φ(6, 4)) + 4uv (u4− v 4) sin(4φ(6, 4)))
}{

W (6, 6), 1
3πλ5 ((u6− 15v 2u4 + 15v 4u2− v 6) cos(6φ(6, 6)) + 2uv (3u4− 10v 2u2 + 3v 4) sin(6φ(6, 6)))

}
jems describes wave-front aberrations to order 8.
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Wave-front aberrations to order 8
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Taking into account partial spatial and temporal coherence

Coherence of illumination:
I Source size (spatial coherence).
I Energy spread (temporal coherence).

Partial coherence (always the case): T̃ (q′, q) : transmission cross-coefficients =⇒ is
approximated by a transfer function T̃ (~u) and several envelope functions (attenuation of a range
of spatial frequencies)..
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Approximations: phase contrast transfer function
For weakly scattering objects (weak phase objects) the imaginary part of the (complex) transfer
function, Phase Contrast Transfer Function, is only considered and

Phase contrast transfer functionPierre StadelmannJEMS-SAASCH-3906 Saas-FeeSwitzerland Theory of image formation and diffraction



Phase object: change of phase ϕ

When the crystal potential V (~r) is constant on dz arbitrarily small, the wave-vector of the
electron of energy (e (E + V (~r)) is:

k =

√
2 m e (E + V (~r))

h2

The refraction index of the media~n i.e. ratio of the wave-vector of the media to that of vacuum
(|V (~r)| << E ) is:

n =
~km
~kv

=

√
E + V (~r)

E ≈ 1 + V (~r)
2E

=⇒ Change of phase ϕ between the wave-function in vacuum and in the crystal for the same
distance d~z :

dϕ = (~km −~kν) · d~r = (n− 1)|~kν|dz =
χ

2E V (~r)dz

where χ = |kv |.
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Phase object: Ψo(~x)

For an object of thickness ∆z , the phase change ∆ϕ is:

∆ϕ =
χ

2E

∫ z+∆z

z
V (~x ; z)dz

=
χ

2E Vp(~x ; z)∆z

The transmittance function of the object of thickness ∆z is:

Ψo(~x) = e−2πı∆ϕ

= e−2πı χ
2E Vp(~x ;z)∆z

= e−ıσVp(~x ;z)∆z

where:
σ =

πχ

E =
π

λE

Pierre StadelmannJEMS-SAASCH-3906 Saas-FeeSwitzerland Theory of image formation and diffraction



Weak Phase Object Approximation: WPOA

For a Weak Phase Object the transmittance is approximated by:

Ψo(~x) = e−ı σVp(~x ;z) ≈ 1− i σVp(~x ; z)

The Fourier transform of the weak phase object, Ψ̃o(~h), in the Back Focal Plane of the objective
lens) is:

Ψ̃o(~h) = δ(~h)− i σ Ṽp(~h; z) (1)

Note that δ(~h), the Fourier transform incident wave-function (plane-wave) and the object
information, σ Ṽp(~h; z), are out-of-phase by π

2 . As a consequence interference between the
transmitted beam and the reflections is not possible.
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Image function: Ψ̃i(~h)

Ψ̃i(~h) is the product of microscope’s transfer function T̃ (~h) by the object wave-function Ψ̃o(~h):

Ψ̃i(~h) = Ψ̃o(~h)T̃ (~h)
= Ψ̃o(~h)e2πıχ(~h)

where χ(~h) is given by (∆z defocus (W20) and Cs spherical aberration coefficient (W40)):

χ(~h) = Cs λ3 (~h ·~h)2

4 − ∆z λ(~h ·~h)
2
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Intensity in the mage plane: I(~x)

The image wave-function is:

Ψ̃i(~h) = [δ(~h)− ıσṼp(~h; z)][cos 2πχ(~h) + ı sin 2πχ(~h)]

When sin 2πχ(~h) = −1 and cos 2πχ(~h) = 0 for the most important reflections~h, Ψ̃i(~h)
becomes:

Ψ̃i(~h) = δ(~h)− σṼp(~h; z)
The image intensity (Ψi(~x)Ψ∗i (~x)) is given by:

I(~x) = (1− σVp(~x ; z))(1− σVp(~x ; z)) ≈ 1− 2σVp(~x ; z)
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WPOA image formation summary

The image intensity of a weak phase object:
I Intensityé is linearly related to the projected potential.
I Intensity shows dark dots where the projected potential is important (at the atomic columns

positions).
I Intensity shows white dots where the projected potential is null (at the channel positions).

Remark: on aberrations corrected microscopes it is possible acquire images with slightly negative
Cs and have:

I(~x) ≈ σVp(~x ; z)
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Weak phase object: inverse contrast

When sin 2π χ(~h) = 0 et cos 2π χ(~h) = 1, the image intensity (Ψi(~x)Ψ∗i (~x)) becomes since:

Ψ̃i(~h) = [δ(~h)− ı σ Ṽp(~h; z)]

I(~x) = (1− ı σ Vp(~x ; z))(1 + ı σVp(~x ; z))
= 1 + σ2 V 2

p (~x ; z)
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HRTEM image depends on specimen thickness and object defocus

Thickness [nm]
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Defocus series
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Problems
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Problems...

I Object
I → Atomic scattering amplitude below 50 kV?
I → Potential by DFT calculation?
I ...

I HRTEM → Phase of diffracted beams evolves with specimen thickness.
I HRTEM → MTF of image acquisition system (Stobbs factor?).
I HRTEM / HRSTEM → Electron channeling depends on atomic column

content.
I HRTEM / HRSTEM → Aberrations of optical system.
I HRTEM → Inelastic scattering (J.M. Cowley, E.J. Kirkland, D. van Dyck,

A. Rosenaurer, K. Ishizuka, Z.L. Wang, H. Rose, H. Mueller, L. Allen, ...).
I HRTEM / HRSTEM → Drift, vibration, Johnson-Nyquist noise11, ...
I ...

11S. Uhlemann, H. Mueller, P. Hartel, J. Zach & M. Haider, Phys. Rev. Lett. 111 (2013) 046101.
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HRTEM problem: amplitude and phase of diffracted beams

Note that phase of diffracted beam is π
2 out-of-phase with respect to transmitted beam. As a

consequence of the phase change of the reflections, the contrast of the HRTEM images shows
fast changes or even contrast reversal with an increase of the specimen thickness.
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HRTEM problem: CCD MTF (Gatan MSC 1K x 1K, 24 µm)
To make quantitative comparison with experimental HRTEM images the MTF of the detector
must be introduced in the simulation.

Si (220)

Figure: At high magnification Si (220) planes
imaged with high contrast.

Si (220)

Figure: At low magnification Si (220) planes
imaged with low contrast.

For quantitative comparison always use highest possible magnification (or include CCD MTF in
simulations)!
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CCD MTF: high magnification ( 900 kx)

A

Figure: A: Si [001] simulation.

B

Figure: B: Si [001], simulation + CCD MTF.
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CCD MTF: low magnification (225 kx)

A

Figure: A: Si [001] simulation.

B

Figure: B: Si [001], simulation + CCD MTF.
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Does Cs and Cc correction solves all imaging problems?
Example: CdCu2, visibility of the 3 Cu atomic columns.

2 Cd

3 Cu

2 Cu

HRTEM image simulation conditions
Acc. [kV] Cs [mm] C5[mm] Cc [mm] ∆E [eV ] Z [nm] ∆z [nm]

300 -0.008 30 0.5 0.6 -4.9 1
300 -0.008 30 0.1 0.2 -2.0 1

Dynamical scattering effects are not affected by Cs and/or Cc corrected TEM!
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CdCu2[001]: imaging parameters set 1

Thickness

Defocus

Visibility of 3 Cu atomic columns depends on specimen thickness and defocus.
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CdCu2[001]: imaging parameters set 2

Thickness

Defocus

Improving Cc and ∆E does not affect the visibility of 3 the Cu atomic columns. It depends on
specimen thickness (and defocus indeed). Visibility of the 3 Cu atomic columns is always
affected by dynamical scattering. Only extremely thin specimen (≤ 10 nm) will allow faithful
imaging of crystal projected potential.
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HRTEM or STEM HAADF imaging

High Angle Annular Dark Field (HAADF): inelastically scattered electrons.
When simulation is necessary how to simulate images?
Numerous approximations:

I Simple projected + convolution with probe intensity: no channeling effect (Weak Object
Approximation).

I Multislice calculation: channeling + inelastic scattering (absorption potential) +
convolution with probe intensity.

I Frozen lattice (phonon) approximation: atoms of super-cell displaced out of equilibrium
position, probe scanned on imaged area, intensity collected by annular detector.

I Pennycook, Nellist, Ishizuka, Shiojiri, Allen, Wang, Rosenauer, van Dyck, ...
Except the first 2 methods, simulation time expensive (luxury?). Approximations (necessity) may
suffice...
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HAADF: graphene

Figure: Proj. pot. approx. Figure: Channeling
calculation.

Figure: Frozen lattice 5 conf. Figure: Frozen lattice 10
conf.
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HRSTEM - HRTEM comparison: graphene with add atoms

Si

C

Figure: Graphene with Si in 6 C ring, Si substitutional and 2 C column.
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Graphene HAADF (100 kV, 70 -150 mrad)

Figure: Frozen lattice (∼400 s). Figure: Channeling (∼2 s).

One Si shows more contrast than 2 C atoms (i ∼ Z 2) : 142

compared to ∼ 2× 62.
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Graphene HRTEM (100 kV, Cs − 0.033mm)

Figure: Weak phase object app., Cc = 0.5mm Figure: Multislice, Cs = −0.033mm, Cc = 0, no
thermal magnetic noise.

HRTEM does not display the strong contrast difference between
one Si and two C as given by HAADF.
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HRTEM / HRSTEM problem: aberrations of optical system

Reaching 0.05 nm resolution sets very strong conditions on aberrations correction.

Figure: Aberration figure of C34(0.5µm), phase jump
at π

4 .
Figure: Optical Transfer Function.

Note that Optical Transfer Function (HRSTEM) transfers higher spatial frequencies than
Ccoherent Transfer Function (HRTEM).
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HAADF: graphene

Figure: Probe affected
by 2 fold astigmatism.

Figure: Probe affected
by 3 fold astigmatism.

Figure: Probe affected
by coma.

Figure: Corrected probe
(best defocus).

Figure: HAADF
projected potential
approximation.

Figure: HAADF
multislice calculation
(simple).

Figure: Frozen phonons
5 configurations.

Figure: Frozen phonons
10 configurations.
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The two most employed diffraction calculation methods

All approximations are numerically equivalent, but perform best in particular
cases.
We will consider only 2 approximations:

I The multislice approximation12.
I The Bloch-wave method13.

The multislice method performs best when simulating crystalline or amorphous
solids of large unit cell or containing defects while the Bloch-wave method is
adapted to the calculation of crystalline solids of small unit cell and in any [uvw]
orientation. The Bloch-wave method has also several advantages (speed, ease of
use) for simulating CBED, LACBED or PED patterns and for polarity and
chirality determination.

12J. Cowley and A.F. Moodie, Proc. Phys. Soc. B70 (1957) 486, 497 and 505.
13H. A. Bethe, Ann. Phys. 87 (1928), 55.
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Multislice method

1
432

propagator

phase object

wavefunction

*

(IFT * FT)

The solid is sliced into thin sub-slices. The incident wave-function is transferred by the first slice
(diffraction) and propagated to the next one. The propagation is done within the Fresnel
approximation, the distance between the slices being 20 - 50 times the wavelength.

Ψ(i + 1) = [Ψ(i)PO(i)]⊗ FPi→i+1
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Multislice algorithm

2 steps:
I Diffractor: transfer by one slice ⇒ multiplication by phase object function (POF (~ρ)).
I Propagator: propagation between slices ⇒ convolution by the Fresnel propagator (is

nowadays performed by a FFT followed by a multiplication and an inverse FFT (FT−1,
multiplication, FFT)) (calculation error O(z)).

For improved multislice calculations (O(z2)) the wave-function is propagated over z/2, then
multiplied by the phase-object function of the slice and finally propagated again over z/2. Slices
do not need to have equal thicknesses.

Work best to simulate:
I Perfects crystals of large unit cell parameters14.
I Defects under the periodic continuation assumption15.

Is also used for:
I ADF image simulation in the ”Frozen Lattice” approximation16.

14K. Ishizuka, Acta Cryst. A33 (1977) 740-749.
15A.J. Skarnulis, Thesis, Arizona State University 1975.
16E.J. Kirkland, Advanced Computing in Electron ¡microscopy.
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Multislice: periodic continuation

One unit cell model. Periodic continuation model (2 x 2 unit
cells).

In order to avoid ”aliasing problems” during the multislice iterations the phase-object function
and the propagator function must be sampled properly and also be ”band-limited”.
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Example multislice: Pt catalyst

A

K0

A: catalyst model (9500 atoms)

B

B: HREM image (Jeol 400kV).

This simulation was performed with a phase-object function sampled on a 1024 x 1024 grid.
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Bloch wave method: z-independent potential
When the scattering potential is periodic, the eigenstates |j > of the propagating electrons are
Bloch waves. The hamiltonian of the system is projected on the eigenstates |j > with
eigenvalues γj (”anpassung” parameter).

Ĥ = ∑
j

γj |j >< j |

The evolution operator is then given by (since V = V (~ρ)):

Û(z , 0) = e−i Ĥz = ∑
j

e−iγj z |j >< j |

The wave-function at z developed on plane waves basis |q >:

Ψ(z) = ∑
q

φq(z)|q >

φq(z) =< q|Û(z , 0)|0 >= ∑
j

e−iγj z < q|j >< j |0 >

c∗j0 =< j |0 > and c j
q =< q|j >

where in usual notation c∗j0 and c j
q are the Bloch-wave excitations (component of the initial state

|0 > on |j >) and coefficients (component of reflection |q > on |j >) respectively17.
17C. Humphreys & R.M. Fisher, Bloch Wave Notation in Many-Beam Electron Diffration, Acta Cryst. A27 (1971) 42-45.
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Bloch wave method: applications

Simulation of:
I SAED (kinematical and dynamical).
I CBED (polarity).
I LACBED (specimen thickness, symmetry).
I PED (Precession Electron Diffraction).
I HRTEM.

Works best for small lattice parameters crystals18.

18Some more details in Appendix1.
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CBED: ZnTe [110]
Zn Te

ZnTe [110]

Figure: ZnTe [110]. Figure: Reflections (1 +
49), |χ >= 0.

Te

Figure: Bloch-wave 1
(Te 1s).

Zn

Figure: Bloch-wave 2
(Zn 1s).

Figure: Bloch-wave 5
(Te-Zn).

Figure: Bloch-wave 7
(Te-Zn).

Figure: Bloch-wave 8
(Te-Zn).

200

200

Figure: CBED (ZnTe
polarity).
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SAED: Diffraction pattern & specimen thickness

0 2 10
T [nm]20

In BFP diffraction pattern depends specimen thickness.

Goodness of dynamical diffraction
theories?
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LACBED: Si [001]

Figure: LACBED Si [001]: simulation. Figure: LACBED Si [001]: experimental (Web site EM
centre - Monash university, J. Etheridge).

Note that the experimental LACBED pattern is blurred (inelastic scattering and/or MTF of CCD
camera?).
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Appendix 1: Dynamical theory of elastic scattering of high energy
electron

We aim to understand in details multiple elastic scattering of electrons by crystals.
I High energy electron (eE).
I Periodic interaction potential V (~r).
I Time independent flux of incident electrons.

The fundamental equation of electron elastic scattering by a potential Vv [Volt ](positive inside a
crystal) in the approximation of a stationary flux of electrons of a given energy e E is the
Schrödinger equation19:

4Φ(~r) + 2me
h̄2 [E + Vv(~r)]Φ(~r) = 0

With a change of notation its is written as:

[4+ 4π2K 2
i ] Φ(~r) = −4π2Vv(~r) Φ(~r)

Where the wavevector |~Ki | of the incident electrons is given by:

|Ki | =
√

2meE
h

and
m = γ m0

19C. Humphreys, The scattering of fast electrons by crystals, Rep. Prog. Phys. 42 (1979) 1825-1887.
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Schrödinger equation

The Laplacian 4 = ∂2

∂x 2 +
∂2

∂y 2 +
∂2

∂z2 is written as: 4ρ +
∂2

∂z2 . As a result, [4+ ...]e2πıkz zΨ(ρ; z)
is given by: [4ρ +

∂2

∂z2 + ...]e2πıkz zΨ(ρ; z).
Performing the z-differentiation:

∂2

∂z2e2πıkz zΨ(ρ; z) = e2πıkz z [−4π2k2
z + 4πıkz

∂

∂z +
∂2

∂z2 ]Ψ(ρ; z)

Inserting the last expression and dropping the term e2πıkz z :

[4ρ + 4π2(K 2
i − k2

z + V (ρ; z)) + 4πıkz
∂

∂z +
∂2

∂z2 ]Ψ(ρ; z) = 0

Since K 2
i = k2

z + χ2:

[4ρ + 4π2χ2 + 4π2V (ρ; z) + 4πıkz
∂

∂z +
∂2

∂z2 ]Ψ(ρ; z) = 0

Rearranging the last equation:

ı
∂Ψ(ρ; z)

∂z = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z) + ∂2

∂z2 ]Ψ(ρ; z)
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Fundamental equation

ı
∂Ψ(ρ; z)

∂z = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z) + ∂2

∂z2 ]Ψ(ρ; z)

The term |∂
2Ψ(ρ;z)

∂z2 | being much smaller than |kz
∂Ψ(ρ;z)

∂z | we drop it (this is equivalent to neglect
backscattering).
Fundamental equation of elastic scattering of high energy mono-kinetic electrons with a
potential within the approximation of small angle scattering:

ı
∂

∂z Ψ(ρ; z) = − 1
4πkz

[4ρ + 4π2χ2 + 4π2V (ρ; z)]Ψ(ρ; z)

Time dependent Schrödinger equation =⇒ solution by many methods of quantum mechanics!
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Remarks
I The approximations of the fundamental equation are equivalent to assume that the

scattering potential is small compared to the accelerating potential and that kz varies only
slightly with z . It is in fact a quite good approximation, since the mean crystal potential is
of the order of 10− 20 V .

I Electron backscattering is neglected, the electron are moving forwards.
I The fundamental equation is actually equivalent to a 2-dimensional Schrödinger equation

(ρ = {x , y}) where z plays the role of time. The system evolution is causal, from the past
to the future.

Fundamental equation in Hamiltonian form:

ı
∂

∂z Ψ = H ψ

where:
H = − 1

4πkz
[4ρ + 4π2χ2 + 4π2V (ρ; z)] = Ho +

4π2V (ρ; z)
4πkz

A fundamental postulate of quantum mechanics20 says that the evolution operator obeys the
equation:

ı
∂

∂z U(z , 0) = H(ρ; z) U(z , 0)

20R. Shankar, Principles of Quantum Mechanics (1994) Plenum Press, New York and London.
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Causal evolution operator

U(z , 0): unitary operator (the norm of |Ψ > is conserved), in general not directly integrable
=⇒ approximations.
U(z , 0) can be directly integrated only when H(ρ; z) and ∂

∂z H(ρ; z) commute. In that case the
general solution is21:

U(z , 0) = e−ı
∫ z

0 H(τ) dτ

H(ρ; z) and ∂
∂z H(ρ; z) commute when:

I V (ρ; z) does not depend on z, i.e. V (ρ; z) = V (ρ)(perfect crystal).
I V (ρ; z) can be neglected (free space propagation).
I H(ρ; z) is approximated by it potential term (phase object).

Three approximations are available in jems:
I Multislice method.
I Bloch wave method.
I Howie-Whelan column approximation.

21A.Messiah, Mecanique quantique (1964) Dunod Paris.
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jems student edition

To learn how to perform diffraction and image calculations (HRTEM and HRSTEM) you can
download jems student edition version 4.4131 at:

http://www.jems-saas.ch/

Since we will use this software during the Hands-on demos, if you travel with your notebook
either Windows, MacOSX or Linux ubuntu, have it installed on it.
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