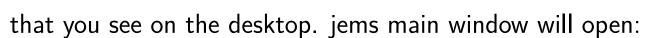
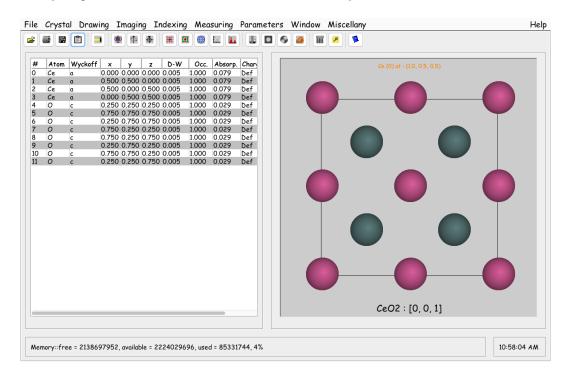
Diffraction and Image Simulation Laboratory Notes

2019 CCEM Summer School on Electron Microscopy at McMaster University June 2 to June 7, 2019


> Pierre Stadelmann JEMS-SAAS CH-1805 Jongny Switzerland


> > May 15, 2019

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Starting jems

Start jems ¹ with this icon:

Main jems window, atoms position (left panel) and [001] projection of the unit cell (right) of default crystal structure.

¹http://www.jems-saas.ch

jems MenuBar: part 1

File Crystal Drawing Imaging Indexing Measuring Parameters Window Miscellany jems MenuBar.

0	0				
File	Crystal	Drawi	ng	١r	
Ne	w from clip	board	^N)	
Pag	Page setup				
Pri	nt		^P		
Se	ect		^A		
Exi	t -		^E		

File menu: to select a crystal structure.

Crystal	Drawing	Imaging
Atom		^A
Calcule	ator	^c
Make	orthogonal	^o
Struct	ture factor	^v
Syster	n	•
Transf	orm unit cell	^т
Zone	ixis geometry	^Z

Crystal menu: to define crystal structures.

Drawing	Imaging	Indexir
Diffracti	on	^D
Image	3D	^ı
Perspe	ctive	^P
Recipro	cal space	^R
Stereog	gram 0.200	^s
Thon d	iagram 500	^н
Transfe	r function	^T
X-Ray p	owder line	^x

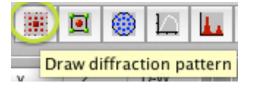
Drawing menu: to draw crystal structures, diffraction patterns.

Imaging	Indexing	Mea
ADF		^ <u>A</u>
Blochw	ave	^B
Howie-\	Whelan	^н
HRSTE	M imager	^s
HRTEM	limager	^т
Load		ः)∙ः
Multislic	e 0.500	^м
Process	sing	^P

Imaging menu: to perform Blochwave or multislice calculations.

jems MenuBar: part 2

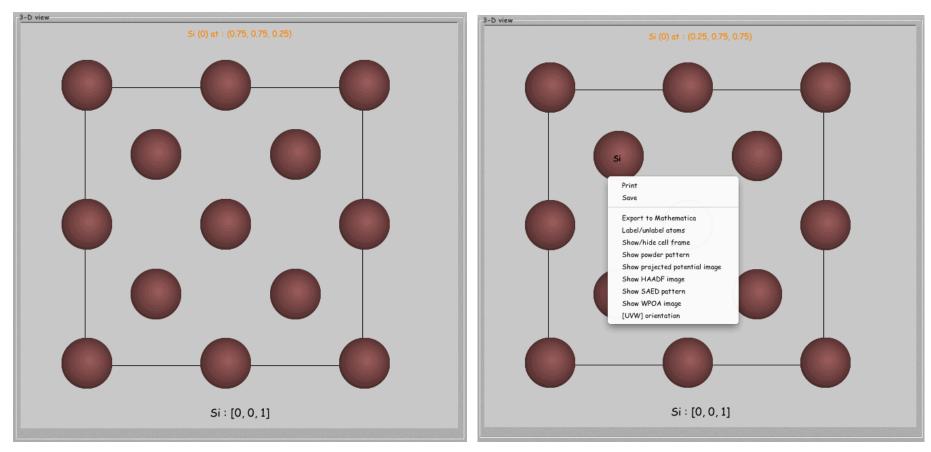
Imaging Indexing Mea			Load image
ADF ^A			Load super-cell
Blochwave AB			Make void
Howie-Whelan H			Thon diagram
HRSTEM imager ^S	Measuring Parameter	Parameters Window	To core-shell
HRTEM imager T	Camera MTF C	Microscope ^M	To particle
Load	Califera Mili	Preferences ^P	
Multislice ^M	Combineter	A.,	To slices
Processing P	Thickness ^T	Specimen X	To triclinic
Indexing menu: to index	Measuring menu: to	Parameters menu: to	Miscellany menu: to
diffraction patterns.	measure camera MTF,	configure jems, define	or create super-ce
	specimen thickness.	microscope or specimen	I
	speemen therees.		
		properties.	


llany menu: to load create super-cells.

Miscellany

Menu items that are frequently used are repeated in the ToolBar:

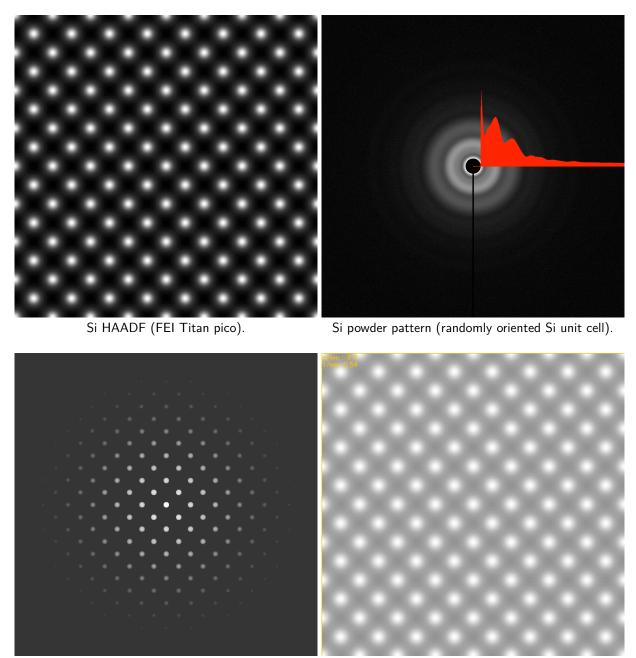
Note that a tool tip text is attached to any jems tool or control. For example:


Main window left panel

#	Atom	Wyckoff	x	У	z	D-W	Occ.	Absorp.	Charge	AFF
0	Si	٥	0,000	0,000	0,000	0.0049	1,000	0.029	Def	0
1	Si	۵	0.250	0.250	0.250	0,0049	1,000	0.029	Def	0
2	Si	a	0.500	0.500	0,000	0.0049	1,000	0.029	Def	0
3	Si	۵	0,000	0.500	0.500	0.0049	1,000	0.029	Def	0
4	Si	٥	0.500	0,000	0.500	0.0049	1,000	0.029	Def	0
5	Si	۵	0.750	0.750	0.250	0.0049	1,000	0.029	Def	0
6	Si	٥	0.250	0.750	0.750	0.0049	1,000	0.029	Def	0
7	Si	۵	0.750	0.250	0.750	0,0049	1,000	0.029	Def	0

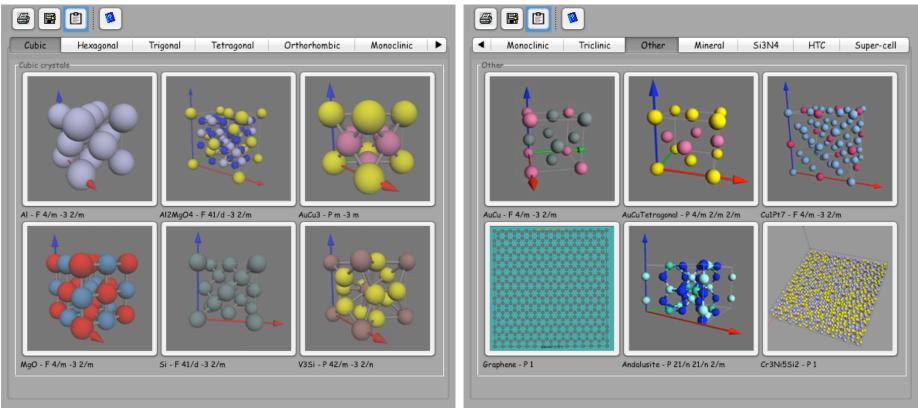
The left panel displays a tabular list of the silicon atoms.

With the alternate non-centric F d -3 m space group the Si structure contains 8 atoms. Only the atom at Wyckoff position a, (x, y, z) = (0, 0, 0), must defined. All the other atom positions are generated by the symmetry operations of the space-group.


- 0: atom sequence number.
- Si: atom symbol.
- > a: Wyckoff position.
- ▶ 0.000: × coordinate [0, 1]
- 0.000: y coordinate [0, 1]
- 0.000: z coordinate [0, 1]
- ▶ 0.0049: Debye-Waller temperature factor [nm²]
- 1.000: site occupancy [0, 1[.
- 0.029: absorption coefficient.
- Def: charge.
- O: Atomic Form Factor source (Doyle-Turner or Smith-Burge).

The right panel shows a projection of a silicon unit cell. Note that all atoms of the FCC Bravais lattice are shown. A mouse click on an atom position labels the atom and a right mouse click displays a popup menu (Ctrl-mouse click on Mac OSX). Note that a popup menu is attached to many drawings and tables. The popup menu of the right panel allows to:

- Print: generates a pdf printout of the drawing.
- Save: generates an image of the drawing (using the format defined in the Preferences).
- Export to Mathematica: exports the structure as a Mathematica notebook.
- ► Show/hide cell frame: displays or hides the cell frame.
- Show powder pattern: uses Debye formula to display a powder pattern.
- Show HAADF image: displays a HAADF image (projected potential convoluted with the OTF).
- Show SAED pattern: displays a kinematical diffraction pattern (1 unit cell thick crystal).
- Show WPOA image: displays a HRTEM image using the Weak Phase Object Approximation (1 unit cell thick crystal).
- ► [*UVW*] orientation: changes the zone axis.


Popup menus items

Si [001] kinematical selected area diffraction pattern.

Si HRTEM image (WPOA) approximation.

jems student editions offers 72 selectable crystal structures. They are available in tabs Cubic, Hexagonal, ...of *Select crystal dialogue*.

6 different *Cubic* crystals can be selected.

6 different Other crystals.

Displaying structures using openGL

ferences Atom Color	Contour Debug Display Font Imaging Indexing Mail Measuring Microscope	Miscellary 🕨
,	Image stripe / montage Maximum aberrations order Show stripe Show montage	
	Lowest beam amplitude considered for imaging ⊙ 10-8 ⊙ 10-7 ⊙ 10-6 ⊙ 10-5 ⊙ 10-4 ⊙ 10-3 ⊙ 10-2	
	Maximum dimension of GUI panels Maximum dimension of reduced images • 512 • 640 • 768 • 1024 • 1536	
	Maximum image dimension ○ 256 ○ 384 ○ 512 ○ 640 ○ 768 ○ 896 ⊙ 1024 ○ 2048 ○ 4096	
	Maximum map dimension O 512 O 640 O 768 O 896 O 1024 O 2048 O 4096 O 8192 O 16384	
	Pixel size of high resolution images / nm O 0,0005 0,001 0,002 0,01 0,02 0,03 0,04 0,05	
	Resize loaded images Potential interpolation As is Interpolate Subsample Bilinear Bicubic	
	Power spectrum Power spectrum log scale Linear scale O 0,01 0.1 1 10 1000	
	Java 3D Finable Holography tab Enable Check atom site occupancy Enable Enable	
ave these prefer Save	ences ?	
	Ok	

Cross the Save check box in order to save your preferences.

The preferences dialogue allows to set many jems parameters. Parameters are organised by tabs. The Imaging tab contains defaults for image calculations. In order to display structures or images using openGL, enable the Java 3D check box.

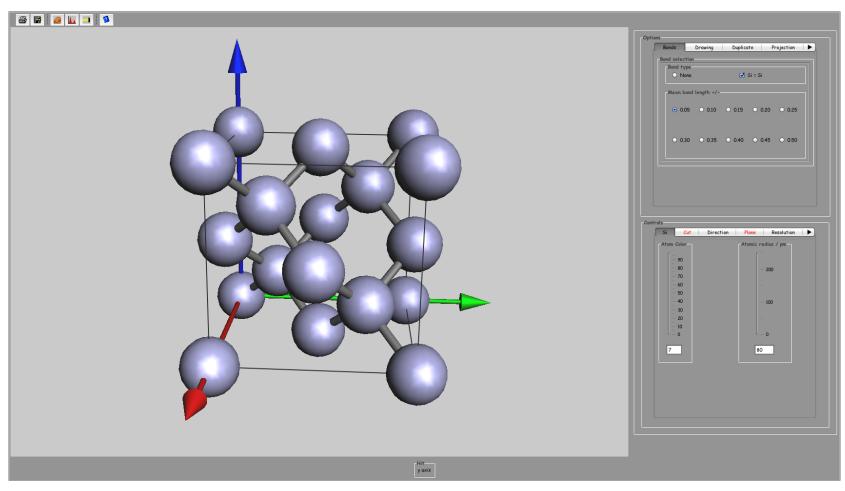
Pierre StadelmannJEMS-SAASCH-1805 JongnySwitzerland Diffraction and Image Simulation Laboratory Notes

Today's HRTEM image simulation lab

We have already seen how to load or define a crystal structure. I suggest to select the Si crystal structure. With this structure we will learn how to:

- Display the structure with openGL.
- Make a table of structure factors, a powder line plot and how to compare it with X-ray or neutron plots.
- Calculate SAED kinematical and dynamical electron diffraction patterns:
 - with HOLZ lines.
 - with Kikuchi lines.
- HRTEM image simulation:
 - Multislice approach.
 - Blochwave approach.
- Measuring CCD MTF.
- CBED and LACBED.

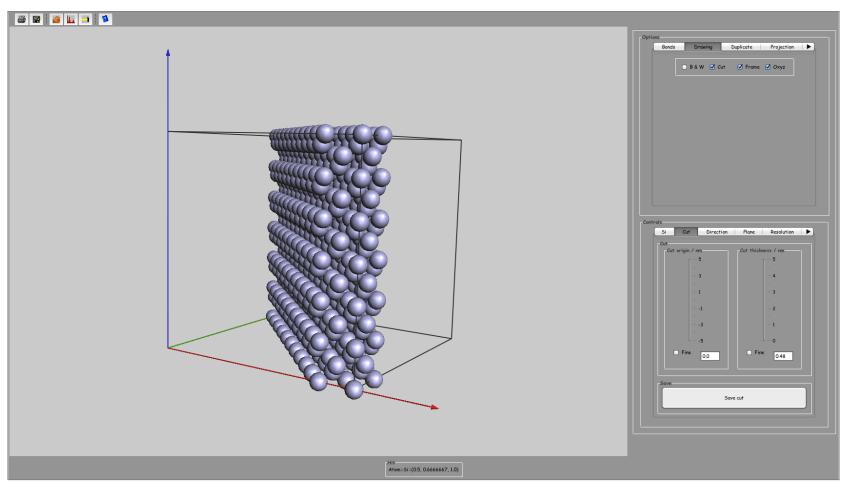
We will finally learn how to define a super-cell and use it to perform HRTEM image simulation. More information is available in jems ../pdfFiles folder.


Documentation folder

Documentation	CalculationsImages.pdf
📘 jemsLinux64.zip	CDDistribution.pdf
📗 jemsMacOSX.mpkg.pkg.zip	ConfigurationAndSetup.pdf
📘 jemsWindows7.zip	InstallationInstructions.pdf
jemsWindowsXP.zip	jemsInstallation.pdf
	JemsLicenseCode.pdf
	License.pdf
	MacOSXLicense.pdf
	Manual.pdf
	Multislice.pdf
	PrecessionElffraction.pdf
	QCBED.pdf
	ReadImage.pdf
	SAEDIndexing.pdf
	Simulation.pdf
	TEMImageSimulation.pdf
	TEMImageSisingJEMS.pdf
	WeberIndices.pdf

Documentation folder contains .pdf files explaining how to perform simulations using jems.

OpenGL display


Use **Drawing** \implies **Perspective** (or the associated tool button) to display the Si structure in 3-D.

One can change the atom color, size or add bonds, cut the unit cell by parallel (hkl) planes, etc. One can also duplicate the unit cell in order to generate larger unit cells.

Duplicated cell and cut

Select tab Duplicate, and x, y, z duplications 6, 6, 6. Then push the little hammer tool button.

Under tab Drawing select X cut and use tab Plane to select the (hkl) plane and tab cut to cut the structure.

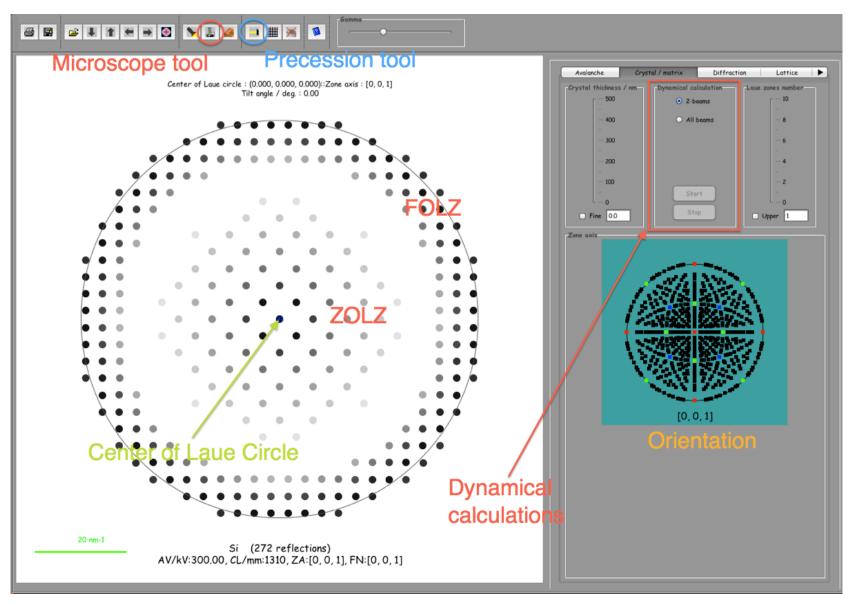
Table of structure factors

Use **Crystal** \implies **Structure factor** to generate a table of structure factors. The table provides the (complex) structure factor, spacing between (hkl) planes, Bragg angle and other useful information.

a b	1 🗖 🍕						
	(h,k,l)	d* / nm-1	Vr / V	Vi / V	Ampli / V	Phase / Deg	Ext. / nm
	(0, 0, 0)	0.000	22.08305	0.64041	22.09233	1.66111	
	(1, 1, 1)	3.18925	5.91545	6.2688	8.61919	46.66111	88.64305
	(1, -1, 1)	3.18925	6.2688	-5.91545	8.61919	-43.33889	88.64305
	(-1, 1, 1)	3.18925	6.2688	-5.91545	8.61919	-43.33889	88.64305
	(-1, -1, 1)	3.18925	5.91545	6.2688	8.61919	46.66111	88.64305
	(1, 1, -1)	3.18925	6.2688	-5.91545	8.61919	-43,33889	88.64305
	(1, -1, -1)	3.18925	5.91545	6.2688	8.61919	46.66111	88.64305
	(-1, 1, -1)	3.18925	5.91545	6.2688	8.61919	46.66111	88.64305
	(-1, -1, -1)	3.18925	6.2688	-5.91545	8.61919	-43.33889	88.64305
)	(2, 0, 0)	3.68263	0.000	0.000	0.000	0.000	0.000
0	(-2, 0, 0)	3.68263	0.000	0.000	0.000	0.000	0.000
1	(0, 2, 0)	3.68263	0.000	0.000	0.000	0.000	0.000
2	(0, -2, 0)	3.68263	0.000	0.000	0.000	0.000	0.000
3	(0, 0, 2)	3.68263	0.000	0.000	0.000	0.000	0.000
4	(0, 0, -2)	3.68263	0.000	0.000	0.000	0.000	0.000
5	(2, 2, 0)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
6	(2, -2, 0)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
7	(-2, 2, 0)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
8	(-2, -2, 0)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
, }	(2, 0, 2)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
0	(-2, 0, 2)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
1	(2, 0, -2)	5.20803	6.8708	0.19925	6.87369	1.66111	111,15209
2	(-2, 0, -2)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
3	(0, 2, 2)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
4	(0, -2, 2)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
5	(0, 2, -2)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
6	(0, -2, -2)	5.20803	6.8708	0.19925	6.87369	1.66111	111.15209
7	(3, 1, 1)	6.10695	2.80514	-2.64703	3.85688	-43,33889	198.09282
8	(3, -1, 1)	6.10695	2.64703	2.80514	3.85688	46.66111	198.09282
9	(-3, 1, 1)	6.10695	2.64703	2.80514	3.85688	46.66111	198.09282
0			2.84703	-2.64703	3.85688	-43.33889	198.09282
1	(-3, -1, 1)	6.10695 6.10695	2.64703	2.80514	3.85688		198.09282
2	(3, 1, -1)	6.10695	2.80514	-2.64703	3.85688	46.66111 -43.33889	198.09282
	(3, -1, -1)						
3	(-3, 1, -1)	6.10695	2.80514	-2.64703	3.85688	-43.33889	198.09282
4	(-3, -1, -1)	6.10695	2.64703	2.80514	3.85688	46.66111	198.09282
5	(1, 3, 1)	6.10695	2.80514	-2.64703	3.85688	-43,33889	198.09282

Use Reduce icon to generate the multiplicity of the reflections.

Tool buttons icons structure factors dialogue

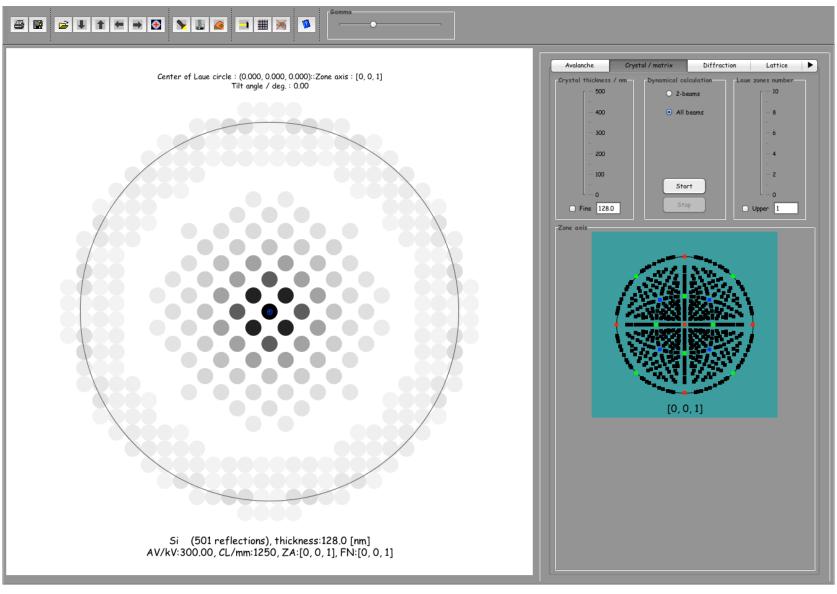


Multiplicity

8	8 🖃 😣		1											
#	(h,k,l)	d* / nm-1	Vr / V	Vi / V	Ampli / V	Phase / Deg	Ext. / nm							
1	(0, 0, 0)	0.000	22,04901	0.7416	22.06148	1.92636								
8	(1, 1, 1)	3.18925	5.99687	6.2183	8.63885	46.03851	88.44134						,	
12	(2, 2, 0)	5.20803	6.8288	0.159	6.83066	1,33383	111.85234	h ma	1×.	5		3 6 9	12 15	
24	(3, 1, 1)	6.10695	2,78815	-2.64629	3.84403	-43.50469	198.75513				_	5 0 9	12 15	
6	(4, 0, 0)	7.36526	4.08513	0.12377	4.08701	1.73543	186.93735			_	-			\sim
24	(3, 3, 1)	8.02611	1.72516	1.84124	2.52317	46.86418	302.79852	k ma	18.	5 .				•
24	(4, 2, 2)	9.02057	2.95358	0.10605	2.95549	2.05641	258.50374				0	369	12 15	
8	(3, 3, 3)	9.56776	1.39135	-1.29023	1.89751	-42.8403	402.63353							
24	(5, 1, 1)	9.56776	1.29023	1.39135	1.89751	47.1597	402.63353						,	
12	(4, 4, 0)	10.41605	2,32818	0.0941	2.33009	2.31451	327.88263	l ma	ux,	5		3 6 9	12 15	•
48	(5, 3, 1)	10.89337	1.1245	-1.03409	1.5277	-42.60172	500.09381						12 15	
24	(6, 2, 0)	11.6455	1.9251	0.0849	1.92697	2.52507	396.46994							
24	(5, 3, 3)	12,07431	0.86275	0.94465	1.27933	47.59441	597.1713	Default	maximum spac	ing : 15.946 [nn	n-11			
8	(4, 4, 4)	12.75701	1.63906	0.07731	1.64088	2,70042	465.5881	Conduit	marman space		,			
24	(5, 5, 1)	13.14962	0.73832	0.81308	1.09828	47.75898	695.60967							
24	(7, 1, 1)	13.14962	0.81308	-0.73832	1.09828	-42,24102	695.60967							
48	(6, 4, 2)	13.77914	1,42274	0.07081	1.4245	2.84928	536.30451							
24	(5, 5, 3)	14,14341	0,71141	-0.64281	0.95881	-42,10044	796.78354		_					
18	(7, 3, 1)	14,14341	0.64281	0.71141	0.95881	47.89956	796.78354			(h,k,l) number : 2	5		
5	(8, 0, 0)	14,73052	1.25182	0.06511	1.25351	2.97759	609.45083							
24	(7, 3, 3)	15.07182	0.62978	-0.56663	0.84717	-41.97871	901.76804							
2	(6, 6, 0)	15.62408	1.11251	0.06005	1.11413	3.08944	685.68855	Atomic Form						
24	(8, 2, 2)	15.62408	1.11251	0.06005	1.11413	3.08944	685.68855	•	•	•	0	۲	0	
3	(5, 5, 5)	15.94626	0.50415	0.56243	0.75531	48.12776	1011.43011	DTSB	EJK	PRDW	WK	WKc.	XRay	
18	(7, 5, 1)	15.94626	0.56243	-0.50415	0.75531	-41.87224	1011.43011	🗹 Relativ	istic correction	 Atomic 				
		Multip	licity											

Kinematically forbidden reflections are not tabulated (for example (2,0,0) structure factor is null but the reflection is observed dynamically).

SAED kinematical diffraction


ZOLZ and FOLZ intensities are scaled independently.

米部 大きと大きとうき

Use check box X LZ colours of tab Options to define the same scale for all Laue zone reflections. Tab Options allows to add Kikuchi lines, HOLZ lines, colors, etc to the plot.

Pierre StadelmannJEMS-SAASCH-1805 JongnySwitzerland Diffraction and Image Simulation Laboratory Notes

SAED dynamical diffraction

Dynamical SAED

Dynamical SAED pattern are calculated using the Blochwave approach. Select tab Crystal/Matrix, radio button \odot All beams and Start. Change the crystal thickness using the thickness slider.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆��

Two methods:

- Image calculations using Blochwave approach.
 - 1. Best for crystal of small unit cell.
 - 2. Easy calculations for low symmetry [uvw] directions.
 - 3. High order Laue zone effects simple to introduce.
- Image calculations using Multislice approach (Physical optics & periodic continuation).
 - 1. Best for crystal of large unit cell or for defects imaged in high symmetry orientation (i.e. [001]).
 - 2. May require a unit cell transformation to slice crystal \perp [uvw].
 - 3. Slices must be of the order of 50 λ .

 $\mathsf{Imaging} \Longrightarrow \mathsf{Blochwave}$

Imaging \implies **Multislice** : how to calculate a map of HRTEM images?

Select the microscope: **Parameters** \implies **Microscope**

Microscope Aberratives Parameters	😰 🖼 🛨 🔲 🕲 🕅
Defined microscopes	
Jeol 2100F Cs Jeol 3010 Jeol 4000 EX Topcon 0028 Titan 80-300	
FEI Titan 80-300 Cs corrected	Oth order 1st order C _c (Cc W ₀₀) [mm] 2.0
○ 50 kV ○ 100 kV ○ 150 kV ○ 200 kV ○ 250 kV ◎ 300 kV	Amplitude C ₀₁ (I W ₁₁) [nm] 0.0 0.0
Acc. volt. / kV 300.000 0 3125 625 9375 1250 •	-9,4
0 3125 625 9375 1250	$C_{12} (A_1 W_{22}) [mm] 0.0 0.0$
Cc / mm 2.000 0 z 4 6 8 10 • •	C ₂₁ (3B ₂ W ₃₁) [rm] 0.0 0.0
	C ₂₃ (A ₂ W ₃₃) [rm] 0.0 0.0
Cs/mm -0030	c ₃₀ (c ₃ W ₄₀) [mm] .003
-2 0 2 4 6 8	C ₃₂ (45 ₃ W ₄₂) [µm] 0.0 0.0
C5 / mm 500	C ₃₄ (A ₃ W ₄₄) [µm] 0.0 0.0
-100 25 150 275 400	
Defacus / rm -9.42	
Defocus / nm -9.42	
Ener. spread / eV 0.60	Reset
Ener. spread / eV 0.60 - 0 1 2 3 4 5 - **	
Lens stability / ppm 1.00	
Lens stability / ppm 1.00 0 4 8 12 16 20	
Vohage stability / ppm 1.00 0 4 8 12 16 20	
ΟΚ	ок

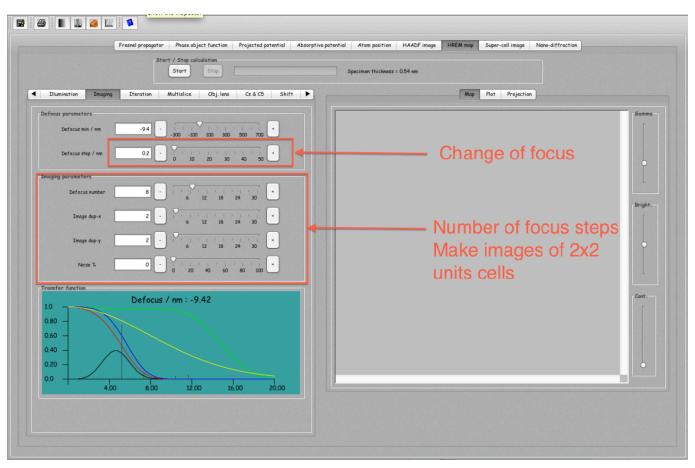
Select a microscope. When not available, edit a new one +

Aberrations: order selected using **Parameters** \implies **Preferences**.

Objective aperture diameter \geq information transfer.

Optical axis can be moved to simulated dark field images.

Open the multislice dialogue: $Imaging \implies Multislice$

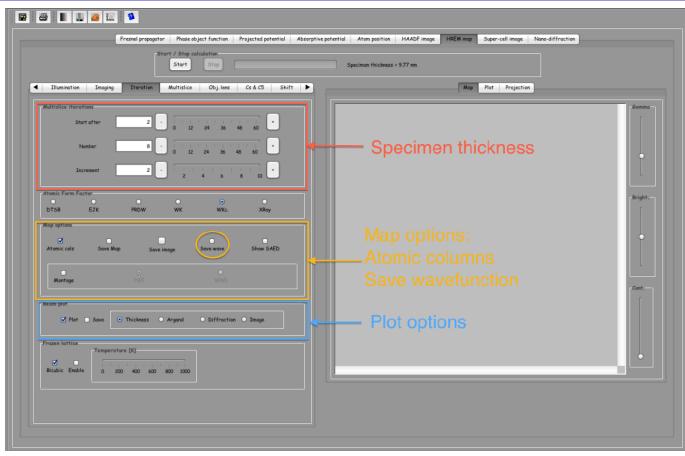

	Freshel propagator Phase object function Projected potential A Start / Stop calculation Start Stop	bsorptive potential Atom position HAADF image HREM map Super-cell image Nano-diffraction Specimen thickness = 0.54 nm	
Illumination Imagin	ng Iteration Multislice Obj. Iens Cs & C5 Shift	Map Plot Projection	Gamm
Coherent Half-conv. / mrad - 100 - 80 60 	Envelope TCC Defocus spread / nm - 50 - 40 - 30 - 20 - 10 - 0 Fine 30 - 30	Image formation	Brigh
1.0 0.80 - 0.60 - 0.40 - 0.20 - 0.0	Defocus / nm : -9.41		Cont

HRTEM image calculation by multislice approach.

The HRTEM map tab is augomatically selected.

Select \odot Envelope in order to introduce effects of partial spatial and temporal coherence.

Select the Imaging tab

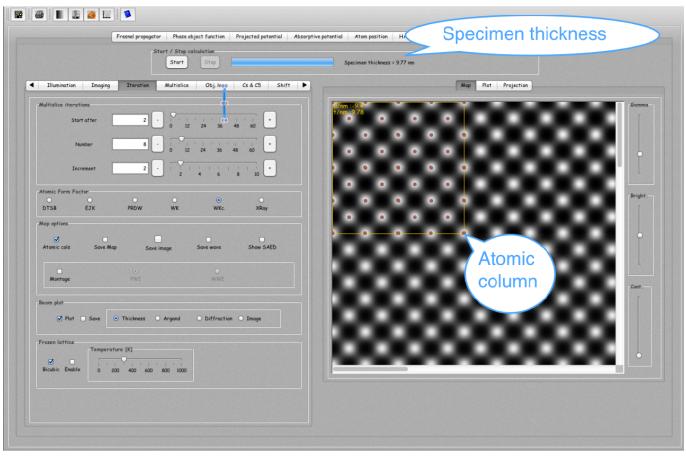


HRTEM image calculation by multislice approach.

Imaging tab sets:

- 1. The defocus between two images of a defocus series and the defocus of the first image (defocus increases).
- 2. The defocus series size.
- 3. The image duplication.

Select the Iteration tab

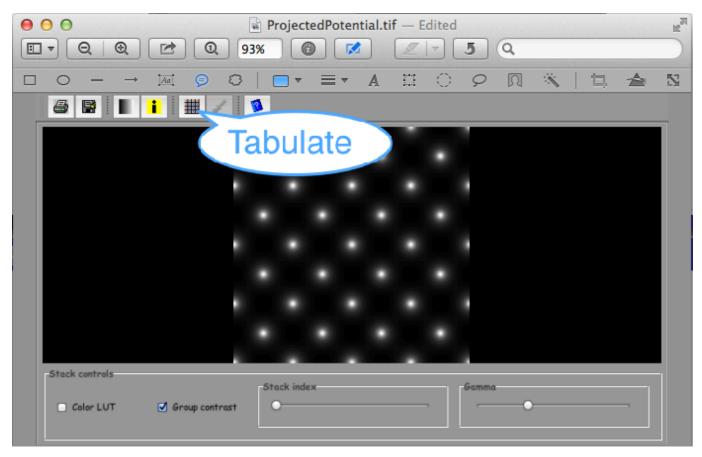


HRTEM image calculation by multislice approach.

Iteration tab sets:

- 1. The minimum thickness of the specimen (Start after).
- 2. The number of thickness steps.
- 3. The thickness between two defocus series images.
- 4. The total specimen thickness is displayed.

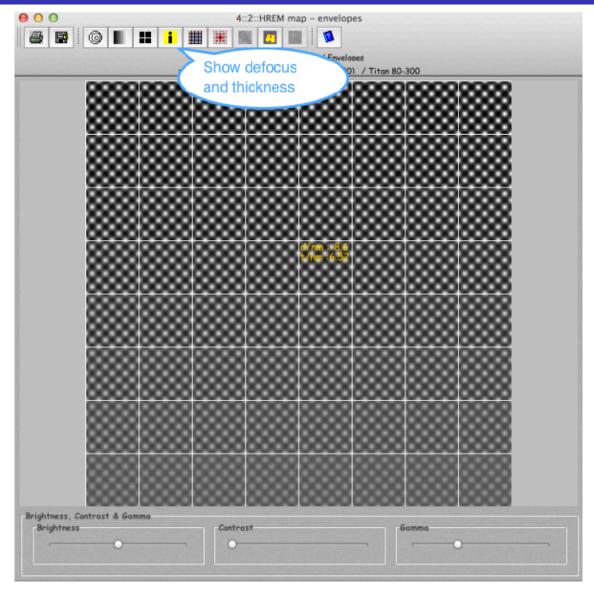
Push Start



Notice that:

- 1. X Atomic cols generates cursor mask showing the position of the atomic columns.
- 2. X Plot generates plots of beam amplitude and phase as a function of specimen thickness.

Projected potential



Projected potential of the slice.

Notice that:

► A table of the projected potential can be displayed, printed and exported to Mathematica.

HREM map

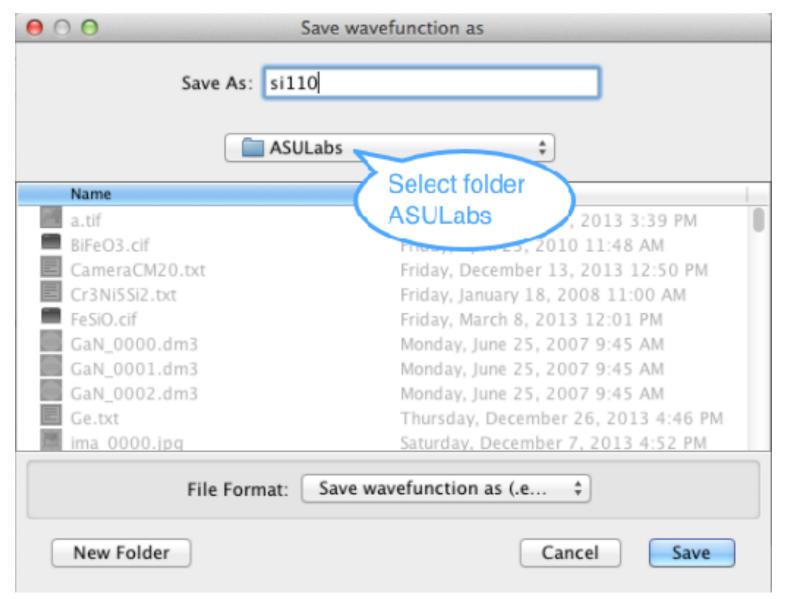
Specimen thickness and defocus are displayed for each image.

Notice that:

Images are made of 2 x 2 unit cells.

Interactive image calculation and display

F	resnel propagator Phase object function Projected potential Absorptive Start / Stop calculation	potential Atom position HAADF image HREM map Super-cell image Nano-diffraction	
	Start Stop	Specimen thickness = 9.77 nm	
Illumination Imaging	Iteration Multislice Obj. lens Cs & C5 Shift 🕨	Map Plot Projection	
Multislice iterations Stort after Number Increment Atomic Form Factor DTSB EJK Map options Atomic cols Save Map	2 0 0 12 24 36 48 60 8 0 12 24 36 48 60 2 0 2 24 36 48 60 2 0 2 24 36 48 60 2 0 2 4 6 8 10 PRDW WK WK. XRay Sove image Sove wave Show SAED O WWI	Carve si: Thickness : 0.54303 Plot 9:0:: Intensity (0.1.0) Specimen thickness	Gamma Bright.
Beam plot Plot Save Frozen lattice Temperatur			


Select \odot Image and Plot and change specimen thickness.

Notice that:

- 1. Defocus is set in the Imaging tab as well as image size.
- 2. Most important aberrations can be varied in the Obj. lens tab.

Iteration tab and \odot Save wave

Redo the map calculation with the \odot Save wave radio button selected. You will be asked to name the wavefunctions.

Saving the wave functions for further imaging.

Select Imaging \implies HRTEM

⊖ ○ O Load wa	avefunction			
ASULabs	* *			
Name A	Date Modified Wednesday, January 1, 2014 3:33 PM			
略 si110TEM_0001.ems 略 si110TEM_0002.ems	Wednesday, January 1, 2014 3:33 PM Wednesday, January 1, 2014 3:33 PM			
略 si110TEM_0003.ems 略 si110TEM_0004.ems	Wednesday, January 1, 2014 3:33 PM Wednesday, January 1, 2014 3:33 PM			
略 si110TEM_0005.ems 略 si110TEM_0006.ems	Wednesday, January 1, 2014 3:33 PM Wednesday, January 1, 2014 3:33 PM			
Fig silloTEM_0007.ems Fig silloTEM_0008.ems	Wednesday, January 1, 2014 3:33 PM Wednesday, January 1, 2014 3:33 PM			
Sillitxt	Wednesday, January 1, 2014 3:33 PM Sunday, December 29, 2013 5:11 PM			
백 Si111.txtNANODIFF_0000.ems 백 Si111.txtNANODIFF_0001.ems	Sunday, December 29, 2013 5:14 PM Sunday, December 29, 2013 5:14 PM			
File Format: Load wavefunction (.ems)				
	Cancel Open			
Load a wave function.				

5 B 🔒 📗 👢 🎕			
Controls Abercations Coherence Dark field Defocus	DefocusSeries Drift & Noise Imaging Microscope 🕨	Wavefunction display Real Amplitude	 Imaginary Phase
✓ 2nd order 3rd order ►	C _c (Cc W ₀₀) [mm] 20	• Positive	O Negative
Amplitude Angle	$c_{01} (\mathbf{I} \mathbf{W}_{11}) [nm] = 0.0 = 0.0$ $c_{10} (\mathbf{Z} \mathbf{W}_{20}) [nm] = 20.0$	Show the image	Image CTF Wavefunction 9.7756195, defocus : 20.0::Intensity
	$\begin{array}{c} c_{12} (\mathbf{A}_1 \mid \mathbf{W}_{22}) [rm] & 0.0 & 0.0 \\ c_{21} (38_2 \mid \mathbf{W}_{31}) [rm] & 0.0 & 0.0 \\ \end{array}$		
	$\begin{array}{c} c_{23} (A_2 \mid W_{33}) [rm] & 0.0 \\ c_{30} (C_3 \mid W_{40}) [rmm] & -0.03 \\ \end{array}$	1 1898	8888888
	$\begin{array}{c} c_{32} (45_3 \mid \mathbf{W}_{42}) [\mu m] & 0.0 & 0.0 \\ c_{34} (4_3 \mid \mathbf{W}_{44}) [\mu m] & 0.0 & 0.0 \end{array}$	200	010101012
(Formula		200	0000000
Reset	$\frac{1}{2} \left(\mathbf{u}^2 + \mathbf{v}^2 \right) \lambda$		
		(0, 0)	000000
		1000	10101010
		8464	-(0.0)
		Min : 0,584555	95, max : 1.0276718, contrast : 0.08955503

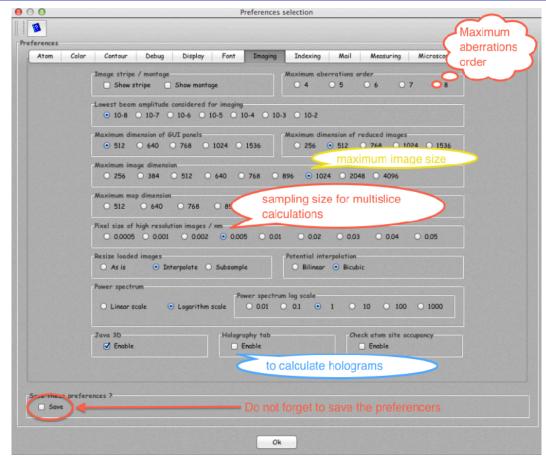
Imager: HRTEM image.

The imager dialogue allows to change interactively many HRTEM imaging parameters.

Imager dialogue: wavefunction

Controls Aberrations Coherence Dark field Defocus DefocusSeries Drift & Noise Imaging Microscope I	Wavefunction display
Aberrations coherence Dark Tiela Derocus Derocus Dritt a Noise Imaging Microscope	Real Imaginary
	Amplitude O Phase O Positive Negative
✓ 2nd order 3rd order ► C _e (Cc W ₀₀) [mm] 2.0	
Amplitude Angle C ₀₁ (I W ₁₁) [nm] 0.0 0.0	Image CTF Wavefunction
W20: Z W22: A1 C ₁₀ (Z W ₂₀) [nm] 200	
C ₁₂ (A ₁ W ₂₂) [nm] 0.0 0.0	
C ₂₁ (3B ₂ W ₃₁) [nm] 0.0 0.0	
C ₂₃ (A ₂ W ₃₃) [nm] 0.0 0.0	
C ₃₀ (C ₃ W ₄₀) [mm]0.03	
C ₃₂ (45 ₃ W ₄₂) [μm] 0.0 0.0	
C ₃₄ (A ₃ W ₄₄) [µm] 0.0 0.0	
Formula	
Reset $\frac{1}{2} \left(u^2 + v^2 \right) \lambda$	

Imager: wavefunction.

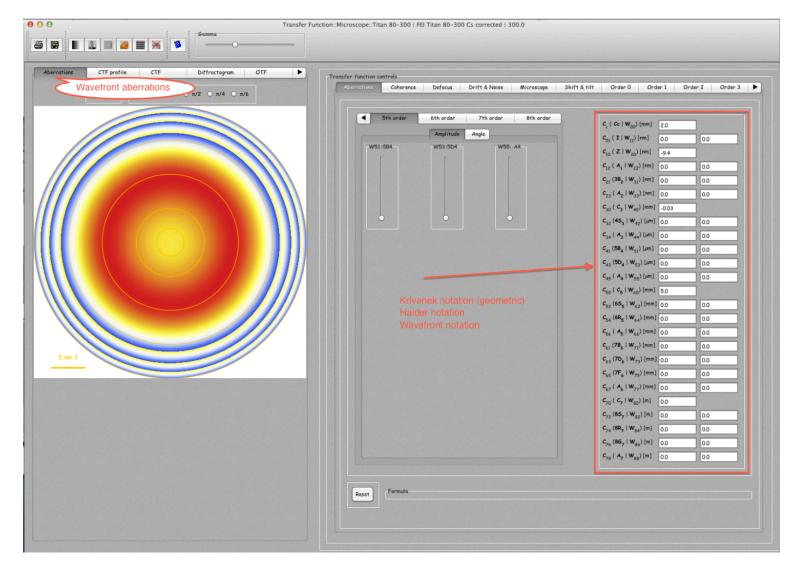

Interactive imaging: Stobbs factor

amera MTF Aberrat	tions Coherence Dark field Defocus DefocusSeries Drift & Noise Imaging	Wavefunction display	
		O Real O Amplitude	 Imaginary Phase
		· Positive	Negative
	Cameras MTF/PSF		
	Default camera		Emoge CTF Wavefunction
	Pixel size [µm] 24 Rows 1024 Columns 1024		ess : 9.7756195, defocus : -9.0::Intensity
	MSC		
	• Pixel size [µm] 24 Rows 1024 Columns 1024		
			\sim
		(0,1,9)	
	Load camera MTF		\sim
TEM			
Magnifica	ation (ASULabs/cameraMT		
	(ASULADS/Callelaivit	1.1.11	
Options			
Show MTF	Show properties		(1,0,0)
Image properties			
Minimum : 0.1466	654 Maximum : 2.14146 Maan : 0.805143 Contrast : 0.499234		
Section of the section of the section of the			

Taking into account the camera MTF.

To see the contrast attenuation due to the camera MTF, change the microscope magnification.

Wavefront aberrations: **Parameters** \implies **Preferences**

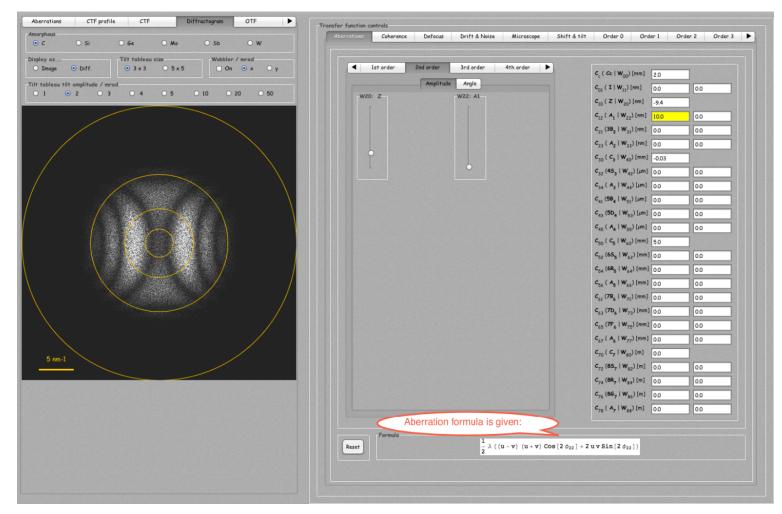


Selecting the wavefront aberrations order.

jems can display aberrations to 8th order. The order is selected in Imaging tab. This tab sets several imaging parameters. The most important are:

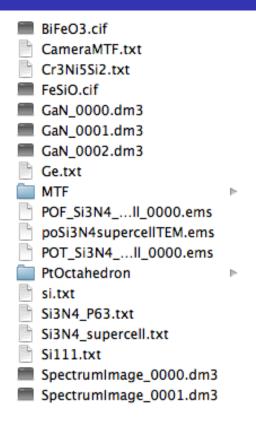
- 1. Pixel size (should not be ¿0.01 nm).
- 2. Java 3D (should be enable when OpenGL is installed).
- 3. Lowest beam amplitude considered for imaging $(10^{-6} \text{ usually})$.

Wavefront aberrations: **Drawing** \implies **Transfer fucntion**


Dialogue to display wavefront aberration, CTF profile, CTF, Diffractogram, ...

Wavefront aberrations: 2-fold astigmatism

00	🗟 Screen Shot 2014-01-01 at 5.22.40 PM — Edited	
E - Q Q 97% Ø 💋	Z 🔻 5 Q	
$\Box \ \bigcirc \ - \ \rightarrow \ \boxtimes \ \bigcirc \ \oslash \ \ \blacksquare \ \overline{} \ \blacksquare \ \overline{} \ A$	日 O タ 同 秋 🏻	1
Aberrations CTF profile CTF Diffractogram OTF	Transfer function controls	
Amorphous	Aberrations Coherence Defocus Drift & Noise Microscope Shift & tilt Order 0 Order 1 Order 2 Order 3	Þ
O C O Si O Ge O Ma O Sb O W		
Display as Tilt tableau size Wabbler / mrad • Image • Diff. • 3 x 3 • 5 x 5 • On • x • y	✓ 1st order 2nd order 3rd order 4th order ►	
Tilt tableau tilt amplitude / mrad	Amplitude Angle C _c (C c W ₀₀) [mm] 2.0 C ₀₁ (I W ₁₁) [rm] 0.0 0.0	
O 1 O 2 O 3 O 4 O 5 O 10 O 20 O 50	W20: Z W22: A1 C ₁₀ (Z W ₂₀) [m] -9.4	
生成的现在是非常的关系的保持的保持的保持的保持 的	C ₁₃ (A, W ₂₂)[m] 100 00	
。 注意的结晶是是在400年的星球的注意。 第二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	astiomatism oo oo	
	C ₃₀ (C ₃ W ₄₀) (mm) -0.03	
	C ₃₂ (45 ₃ W ₄₂) [µm] 0.0 0.0	
The second s	C ₃₄ (A ₃ W ₄₄) [<i>u</i> m] 0.0 0.0	
————————————————————————————————————	C ₄₁ (58 ₄ W ₅₁) [µm] 00 00	
and the second second second second	C ₄₃ (5D ₄ W ₅₃) [µm] 00 00	
Second States and States	C ₄₅ (A ₄ W ₅₅) [<i>u</i> m] 00 00	
	C ₅₀ (C ₅ W ₆₀) [mm] 50	
	C ₅₂ (65 ₅ W ₆₂) [mm] 0.0 0.0	
	C ₅₄ (6R ₅ W ₆₄) [mm] 0.0 0.0	
注意的目的表情的状态。2019年初,1211年前,	C ₅₆ (A ₅ W ₆₆) [mm] 0.0 0.0	
1. 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C ₆₁ (78 ₆ W ₇₁) [mm] 0.0 0.0	
2010年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	C ₆₃ (7D ₆ W ₇₃) [mm] 0.0 0.0	
· 注意的法律性的问题。这些法律的问题。	C ₆₅ (7F ₆ W ₇₅) [mm] 0.0 0.0	
● 自動電気を発展していた。	C ₆₇ (A ₆ W ₇₇) [mm] 0.0	
A CALL AND A	$c_{70}(c_{7} w_{80})[m]$	
· · · · · · · · · · · · · · · · · · ·	C ₇₂ (85 ₇ W ₈₂) [m] 0.0 0.0	
CARGE AND ADD CONCRETENCES IN CONTRACTOR	C ₇₄ (8R ₇ W ₈₄) [m] 0.0 0.0	
	C ₇₆ (8G ₇ W ₈₆) (m) 0.0	
	C ₇₈ (A ₇ W ₈₈) [m] 0.0 0.0	
	Formula	
	Reset $\frac{1}{2} \lambda \left(\left(u - v \right) \left(u + v \right) \cos \left[2 \phi_{22} \right] + 2 u v \sin \left[2 \phi_{22} \right] \right)$	
	2	


10 nm 2-fold astigmatism (Krivanek: C_{12} , Haider A_1 , Wavefront W_{22}).

Diffractogram: 2-fold astigmatism

10 nm 2-fold astigmatism (Krivanek: C_{12} , Haider A_1 , Wavefront W_{22}).

ASULabs folder

The ASULabs folder contains:

- 1. .cif files (BiFeO3 and FeSiO crystal structures).
- 2. MTF folder with .dat files for determining the camera MTF (1024, 1024, signed short, Little endian).
- 3. Gatan images (.dm3)
- 4. Si3N4 unit cell and super-cell.
- 5. Folder PtOctahedron with a large super-cell cut into \approx 0.2 nm slices (PtOct_0000.txt, ...).

Suggestions 1

I suggest you:

- 1. Open the Si3N4.txt crystal file (**File** \implies **Open**).
- 2. Display the structure in 3-D (**Drawing** \implies **Perspective**).
- 3. Display the SAED pattern (**Drawing** \implies **Diffraction**).
- 4. Do HRTEM image simulation (Imaging \implies Multislice) or (Imaging \implies Blochwave).
- 5. Open the Si3N4_supercell.txt crystal file (File \implies Open).
- 6. Display the structure in 3-D (**Drawing** \implies **Perspective**).
- 7. Display the SAED pattern (**Drawing** \implies **Diffraction**).
- 8. Do HRTEM image simulation (Imaging \implies Multislice) using tab Super-cell image. In tab Multislice have the radio buttons \odot Load phase-object and \odot Save phase-object set.

Make sure that aberrations are reset!

Remember that any drawing or table has its own popup menu and that a tip text is attached to any control.

I suggest also that you:

- 1. Open the PtOct_0000.txt crystal file (of folder PtOctahedron) (File \implies Open). It contains the atoms position of the first slice of a large model (Pt octahedron model by Prof. Ernst).
- 2. Do HRTEM image simulation (Imaging \implies Multislice) using tab Super-cell image.
- 3. Add to the super-cells table all the other slices using ++. You can display the model made of the stack of slices.
- Make sure that ⊙ Save of tab Iteration-Wavefunction is selected. To see an image after each slice have the ⊙ Show image ² of tab Iteration selected.
- 5. Select the first slice of the table (PtOct_0000.txt). Start the calculation (Start). You will be asked to give a name to the wavefunctions files.
- Load the last wave function in the HRTEMImager (Imaging → HRTEMImager. Change the imaging parameters in order to how aberrations affect HRTEM images.

²You can close all the images using **Window** \implies **Close All**.

Documentation jemsLinux64.zip jemsMacOSX.mpkg.pkg.zip jemsWindows7.zip jemsWindowsXP.zip

- Copy the .zip file compatible with your PC operating system.
- Do not open it, but use Extract All in order to unzip the file.

Extracting jems

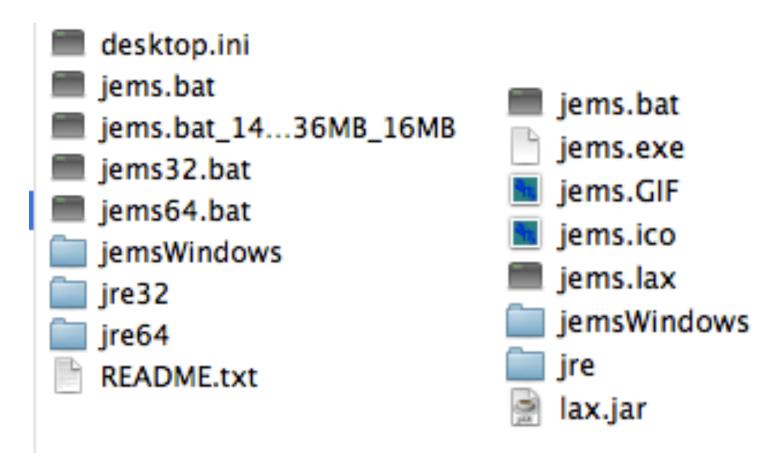


Figure: Windows 7 or 8 version: jems started either using jems32.bat or jems64.bat depending on Windows being 32 or 64 bits.

Figure: Windows XP (only 32 bits).

For Windows 7 after having determine the version 32 (or 64) copy jems32.bat (or jems64.bat) to jems.bat. jems modifies jems.bat.