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TEM modelling steps: incident wave (PW), crystal (OP), electron-matter interaction, Fraunhofer
approximation, image formation (Abbe theory), ...
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−→Dynamical scattering.
Optical system.
Comparing HRTEM and HRSTEM.
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Reminder

|χ > =⇒ incident wave-function
|ψi > =⇒ image wave-function

|Ψi >=
q′

∑ < ρ|q′ >︸ ︷︷ ︸
Fourier synthesis

q

∑ < q′|T̂ (q′, q)|q >︸ ︷︷ ︸
Objective lens transfer

< q|Û(z , 0)|χ >︸ ︷︷ ︸
Fourier transform

|ψi(ρ)|2 =⇒ image intensity

(simple?) (complicated?) (mysterious?) formula of image formation in TEM?
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Methods: < q|Û(z , 0)|χ >

1
1D. Gratias and R. Portier, Time-Like Perturbation Method in High-Energy Electron Diffraction, Acta Cryst. A39 (1983) 576-584.
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A few remarks to start

In the small angle approximation of electron diffraction the 3 dimensional
stationary problem is replaced by a 2 dimensional problem where time is replaced
by z.

The electron microscope destroys the space isotropy as the electron are
propagating thousand times faster in the direction defined by the optical
column of the microscope (z direction) than in the plane perpendicular to it
(Ox ,y plane).
The dynamical theory of elastic diffraction calculates the amplitude and phase
diffracted in a set of directions {|q >} selected by the Bragg law.
Given a known initial state |χ > (direction of incident electrons), what is the
transition probability ω|χ>→|q> after interaction with a scattering potential
during time z (crystal thickness) to particular final state |q > (i.e. a diffracted
beam).
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The fundamental equation of the elastic diffusion of electrons in a potential V is given in the
stationary mono-electronic approximation (constant electron flux, no energy dispersion) 2:

(∆ + k2)Φ = V Φ (1)

where the wave vector k is k =
√

2meE
} , m the mass of the electron corrected for relativistic effect

m = γm0. The mean inner crystal potential Vv(~ρ, z)) is positive and of the order of 30 - 40 volts.

c = speed of light in vacuum.
e = electron charge.
E = accelerating voltage (≥ 50kV ).
γ = 1 + e2 E 2

2 m0 c2 (relativistic mass correction).
m0 = rest mass of the electron (≈ 511 keV ).
V = −2 m e

}2 Vv(~ρ, z)) (scattering potential [nm−2]).

2C. Humphreys, The scattering of fast electrons by crystals, Reports on Progress in Physics Volume 42, Number 11 (1979),1825.
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E [kV ] γ λ [pm] v
c

50 1.098 5.362 0.412
100 1.119 3.706 0.548
200 1.391 2.511 0.695
500 1.978 1.423 0.862
1000 2.957 0.873 0.941

Relativistic mass correction γ, wavelength λ and speed of the electron

(hkl) Bragg angle [mrad ] Bragg angle [deg .] (hkl) spacing nm−1

(1,1,1) 7.91 0.453 4.276
(2,0,0) 9.14 0.523 4.938
(2,2,0) 12.92 0.740 6.983
(1,1,3) 15.15 0.868 8.189
(2,2,2) 15.83 0.906 8.553
(4,0,0) 18.28 1.047 9.876

Bragg angles for some Al reflections at 100 kV.

The small angle scattering is a good approximation for electrons of 50 keV or larger. At very high
energy Bragg angles are very small.
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Elastic scattering
The electron microscope destroys the space isotropy because of the very high kinetic energy of the
electrons. The 3-D space is thus described by (~ρ, z) where ~ρ = (x , y).
Figure 1 shows the wave vectors ~ko and ~kq the incident beam and of a reflection respectively. They
are both located on the Ewald sphere, i.e. the sphere of all possible direction of elastic scattering.
Elastic scattering: ~kq =~ko +~q.

Figure: Elastic scattering. Figure: DiffractionGeometry.

Elastic scattering satisfies |~kq| = |~ko| and~kq −~q =~ko . Combining these 2 equations:
2|~ko|cos

(
π
2 − θB

)
= |~q| . Bragg law: 2 d sin θB = λ.

Pierre StadelmannJEMS-SWISSCH-1805 JongnySwitzerland TEM and STEM Image Simulation



For a typical d of 10 nm−1 and wave vector of 400 nm−1 (at 200 kV), the Bragg angle is of the
order of 0.15 degree. Thus the small angle scattering approximation is well verified in high energy
transmission electron microscopy.
The geometry of the dynamical theory is defined in Figure 2. The wave vector ~ko of the incident
electron is close to a [u, v , w ] crystal direction (zone axis): the miss-orientation is given by ~χ,
projection of ~ko on the Ox ,y plane. The z component kz of ~ko is very large (400 nm−1). As a result
the electron wave oscillates with a very high frequency in the z direction.
The electron wave function ψ(~ρ, z) is written as:

φ(~r) = φ(~ρ, z) = e ikz zψ(~ρ, z) (2)

where ψ(~ρ, z) is a slowly varying function of z. Putting (2) into (∆ + k2)Φ = V Φ and neglecting
∂2

∂z2 because:

∣∣∣∣∂ψ(~ρ, z)
∂z

∣∣∣∣� 1
2kz

∣∣∣∣∂2ψ(~ρ, z)
∂z2

∣∣∣∣
|ψ(~ρ, z)| � 1

2kz

∣∣∣∣∂2ψ(~ρ, z)
∂z2

∣∣∣∣
i ∂

∂z ψ(~ρ, z) = 1
2kz

[
−∆ρ− χ2 + V (~ρ, z)

]
ψ(~ρ, z) (3)
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Fundamental equation

i ∂

∂z ψ(~ρ, z) = 1
2kz

[
−∆ρ− χ2 + V (~ρ, z)

]
ψ(~ρ, z) (4)

The approximations of the fundamental equation (4) is equivalent to assume that the
scattering potential is very small compared to the incident electron energy and that the z
component of ~k only varies very slightly during the scattering process. This is a good
approximation as the mean crystal potential is of the order of 10 - 40 V.
Electron back scattering is neglected (as the z movement is almost constant in the z direction).
Equation (4) is formally equivalent to a time-dependent Schrödinger equation in 2 dimensions
~ρ, where z plays the role of time.
The evolution of the system is absolutely causal, i.e. from the past to the future without any
interaction towards the past (the -z movement of the electrons does not interfere with the +z
movement).

Using a hamiltonian notation equation (4) becomes:

i ∂

∂z ψ = Ĥψ

Ĥ =
1

2kz

[
−∆ρ− χ2 + V (~ρ, z)

]
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Introducing Ĥo as:
Ĥo =

[
−∆ρ + V (~ρ, z)

]
Ĥo is the hamiltonian of a system where ~k is parallel to [u, v , w ].

Ĥ =
1

2kz

[
Ĥo − χ2

]
where χ2 is the transverse kinetic energy of the incident electrons (= 0 when the electron beam is
along [u, v , w ]). Ĥ depends on z through V (~ρ, z).
When V = V (~ρ) does not depend on z, a causal evolution operator Û(z , 0) is defined as:

ψ(~ρ, z) = Û(z , 0)ψ(~ρ, 0)

Assuming that V does not depend on z, is equivalent to replace the crystal by a stack of thin slices,
with constant potential V ′(~ρ) (in a given slice):

V ′(~ρ) = 1
τ

∫ (z+τ)

z
V (~ρ, z ′)dz ′ (5)

The causal evolution operator is thus:

Û(z , 0) = Û(zn, zn−1)︸ ︷︷ ︸
slice n

Û(zn−1, zn−2)︸ ︷︷ ︸
slice n-1

... Û(z1, 0)︸ ︷︷ ︸
slice 1

(6)

Pierre StadelmannJEMS-SWISSCH-1805 JongnySwitzerland TEM and STEM Image Simulation



The evolution operator obeys the following differential equation (postulate of
quantum mechanics) 3 4:

i ∂

∂z Û(z , 0) = Ĥ(~ρ, z)Û(z , 0) (7)

Hence, the small angle approximation of the dynamical theory of elastic electron
diffraction is solved when Û(z , 0) is known.

3A. Messiah, Mécanique Quantique, Dunod Paris, 1964.
4R. Shankar, Principles of Quantum Mechanics, Plenum Press, 1994.
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Notation
In crystal space, at 2 dimensions, ~ρ = (x , y) or ρ (~ρ representation), the position eigenvectors are
given by:

|ρ >= δ(~ρ′−~ρ) (8)
In the dual space or reciprocal space or momentum space the eigenvectors (plane waves) of the
momentum q are given by:

|q >= e i~q .~ρ (9)
In the {|ρ >} basis the electron wave-function is:

|ψ >=
∫

ψ(~ρ′)δ(~ρ′−~ρ)d~ρ′ (10)

In the {|q >} basis the wave-function projected in the ~q direction is:

< q|ψ >=
∫

ψ(~ρ)e−i~q .~ρd~ρ =
∫

ψ(ρ)e−iq . ρdρ (11)

i.e. < q|ψ > is the complex amplitude diffracted in the |q > direction. The wave function:
ψ(ρ) = ∑

|q>
< q|ψ >

is decomposed on a basis of plane waves, i.e. Fourier decomposition.
initial state: |χ > wave function: ψ(ρ, 0) =< ρ|χ >=< ρ|o >

final state: |ψz > wave function: ψ(ρ, z) =< ρ|ψz >=< ρ|Û(z , 0)|o >
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Transition probability

Intensity diffracted in |q > direction is transition probability ωo→q(z , 0) from initial state |o > to
final state |q >:

ωo→q(z , 0) =
∣∣∣< q|Û(z , 0)|o >

∣∣∣2
Intensity at point ~ρ of crystal exit plane:

ωo→ρ(z , 0) =
∣∣∣< ρ|Û(z , 0)|o >

∣∣∣2 = ∣∣∣∣∣∑q
< ρ|q >< q|Û(z , 0)|o >

∣∣∣∣∣
2

Closure for periodic specimen: ∑q |q >< q| = Î .
Intensity observed at point ~ρ located in image plane (observation plane) is modified by microscope
transfer function T̂ (q′, q):

ωo→ρ(z , 0) =
∣∣∣∣∣∑q′ ∑

q
< ρ|q′ >< q′|T̂ (q′, q)|q >< q|Û(z , 0)|o >

∣∣∣∣∣
2

This was the mysterious formula of the image formation in TEM!
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Weak phase object

When the transfer is linear (i.e. for a weak phase object), the transfer matrix is diagonal
< q′|T̂ (q′, q)|q >= T̂ (q)δ(q′− q). Then:

ωo→ρ(z , 0) =
∣∣∣∣∣ ′∑q

∑
q
< ρ|q′ > T (q) < q|Û(z , 0)|o >

∣∣∣∣∣
2

Last step is calculation of evolution operator Û(z , 0). Û(z , 0), a unitary operator, is not generally
integrable.
But when:

V (~ρ, z) does not depend on z (Bloch-wave method)
or V (~ρ, z) can be neglected (Fresnel propagator)
or Ĥ(~ρ, z) reduces to its potential term (Phase Grating),

Ĥ(ρ, z) and ∂
∂z Ĥ(ρ, z) commute and Û(z , 0) is directly integrable.

Pierre StadelmannJEMS-SWISSCH-1805 JongnySwitzerland TEM and STEM Image Simulation



Hermitic or self-adjoint operator

Hermitic or self-adjoint operators can be decomposed on the basis formed by their eigenvectors
(spectral decomposition). For example:

Ĥ = ∑
i

λi |λi >< λi | (12)

= ∑
i

λiP̂λi (13)

where λi is the eigenvalue and |λi > the eigenvector and P̂λi = |λi >< λi | are projection
operators.
Using spectral decomposition, any function of a hermitic operator, f (Ĥ), can be written as:

f (Ĥ) = ∑
i

f (λi)|λi >< λi |

= ∑
i

f (λi)P̂λi

since P̂n
λi
= P̂λi (any function can be developed in a Taylor series).
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Bloch wave method

Scattering potential does not depend on z, it is evaluated by projecting the unit cell potential on a
plane perpendicular to [u, v , w ] zone axis (only Zero Order Laue Zone reflections (hkl), i.e.
hu + kv + lw = 0).

Û(z , 0) = e−[i
∫ z

0 Ĥ(ρ)dτ] = e−i Ĥ(ρ)z

Since Ĥ is a self-adjoint (hermitic) operator, it can be represented in its eigenstates basis {|α >}
by a diagonal matrix γ̂α where the γα are the associated eigenvalues:

Ĥ |α >= γ̂α|α >

The eigenstates are Bloch waves that characterise the propagation of the incident electron wave in
a periodic continuum (crystal) and the eigenvalues γα give the kinetic energy of the Bloch waves.
The unitary operators P̂α = |α >< α| are the projectors on the eigenstates of Ĥ(ρ).

Ĥ = ∑
α

γα|α >< α| = ∑
α

γαP̂α

Finally:
Û(z , 0) = ∑

α

e−iγαz |α >< α| (14)
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The incident wave function |o > is a plane wave (or a sum of plane waves). Using the principle of
superposition, it suffices to consider only one plane wave to calculate the wave function ψ(ρ, z) at
the exit plane of the crystal:

ψ(ρ, z) = ∑
q

φq(ρ, z)|q >

With:
|ψz >= ∑

α

e−iγαz |α >< α|ψo >

φq(ρ, z) (Fourier coefficient of the wave transmitted by the crystal, i.e. reflection in ~q direction
(~q = ~g + ~sg) is:

φq(ρ, z) =< q|ψz >=< q|Û(z , 0)|o >= ∑
α

e−iγαz < q|α >< α|o > (15)

Many books and research papers use Bloch wave ”excitation” and ”coefficients”. They are
expressed in basis |q > and |α > as:

< α|o >= (cα
o )
∗ = cα∗

o projection of |o > on |α >: excitation coefficients.
< q|α >= cα

q projection of |α > on |q >: Bloch wave coefficients.
ψ(ρ, z) =< q|Û(z , 0)|o >= ∑

α

cα∗
o e−iγαz ∑

q
cα

q |q > (16)

The Bloch waves (eigenstates) are linear combinations of plane waves:

|α >= ∑
q

cα
q |q >
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Bloch wave example: ZnTe [110]
Zn Te

ZnTe [110]

Figure: ZnTe [110]. Figure: Reflections (1 +
49), |χ >= 0.

Te

Figure: Bloch-wave 1
(Te 1s).

Zn

Figure: Bloch-wave 2
(Zn 1s).

Figure: Bloch-wave 5
(Te-Zn).

Figure: Bloch-wave 7
(Te-Zn).

Figure: Bloch-wave 8
(Te-Zn).

200

200

Figure: CBED (ZnTe
polarity).
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Bloch-wave example: LACBED - specimen thickness5

Figure: LACBED Si [001]: simulation. Figure: LACBED Si [001]: experimental (Web site EM
centre - Monash university, J. Etheridge).

5file://localhost/Applications/jemsMacOSX/html/Si001/Si001.html
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Multislice method

This method consist to transfer the incident wave function through a plane, acting as a phase
grating, and to propagate the transmitted wave to the next slice. 2 operators (matrices) must be
calculated:

Phase object (Phase Object Function).
Propagator (Fresnel approximation).
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Phase Object Function
Ĥ reduces to 1

2kz
V̂ (~ρ, z). Ĥ is diagonal in the |ρ > representation.

Ĥ(z)|ρ >=
1

2kz
V̂ (~ρ, z)|ρ >

The evolution operator is:

Û(z , 0) =
∫

ρ
dρ|ρ >< ρ|e[

−i
2kz
∫ z

0 V (~ρ,τ)dτ] (17)

At thickness z the wave function is: and |ψz >= Û(z , 0)|o >= e−i 1
2kz Vp(~ρ)|o > ( 1

2kz
is very small

compared to Vp(~ρ).

Phase Object Function:

POF (~ρ) = e−i 1
2kz Vp(~ρ)

The Weak Phase Object approximation uses a first order Taylor approximation of the phase object

function:

POF (~ρ) = 1− i 1
2kz

Vp(~ρ) = 1 + iσ
∫ z

0
Vv(~ρ, τ)dτ (18)
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POF (~ρ): Phase Object Function

POF (~ρ) (real part). POF (~ρ) (imaginary part).
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Fresnel propagator
This approximation describes the propagation of the electron wave in
vacuum.

Ĥ =
1

2kz

[
−∆ρ− χ2]

Ĥ is diagonal in the {|q >} basis.

Ĥ |q >=
q2− χ2

2kz
|q >

The evolution operator is also diagonal in {|q >}:

Û(z , 0) = ∑
q

e−i q2−χ2
2kz z |q >< q|

Without a scattering potential, the incident wave function intensity
is not modified: ∣∣∣Û(z , 0)|o >

∣∣∣2 = ||o >|2
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In real space propagation from point ~ρ1 to point ~ρ2 (on 2 planes
separated by a distance z) is given by:

< ρ2|Û(z , 0)|ρ1 >=
∫

q
e−i q2−χ2

2kz z < ρ2|q >< q|ρ1 > (19)

Since:

< ρ2|q > =
∫

dqδ(~ρ− ~ρ2)e i~q .~ρ

< q|ρ1 > =
∫

dqδ(~ρ− ~ρ1)e−i~q .~ρ

Finally when χ = 0:

< ρ2|Û(z , 0)|ρ1 > =
∫

d~qe−i q2
2kz ze−i~q . (~ρ1−~ρ2)

FP(~ρ1− ~ρ1) = e
−ikz (~ρ1−~ρ2)2

z
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Fresnel propagator: F̃P(u, v)

F̃P(u, v) (real part). F̃P(u, v) (imaginary part).

Wave function after slice n + 1 (~ρ = (x , y)):

Ψn+1(~ρ) = [Ψn(~ρ)⊗ FP(~ρ)]POF (~ρ)
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HRTEM image

AlN [1,1,1] (4.71 nm thick) (projected potential + atoms position, wave-function, image)

Wave-function after slice n + 1:

Ψn+1(x , y) = [Ψn(x , y)⊗ FP(x , y)]POFn+1(x , y)

or:
Ψn+1(~x) = [Ψn(~x)⊗ FP(~x)]POFn+1(~x)
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Dynamical scattering.
−→Optical system.
Comparing HRTEM and HRSTEM.
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Optical system: ∑q < q′|T (q′, q)|q >

xo

z

SE

Ao Ai

xi

yo yi

An optical system produces the image Ai of a point source object Ao. Ao and Ai
are said to be conjugate. Ai is not a point but spot, the Airy disk, since any
optical system is diffraction limited. This limitation is introduced by the
entrance and exit pupils of the optical system. Its point spread function
characterise the system:

PSF (~ρ) = FT−1 [T (~q)]
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Transfer function: property 1

Linearity
S{a1Ψ1

o(~x) + a2Ψ2
o(~x)} = a1S{Ψ1

o(~x)}+ a2S{Ψ2
o(~x)}

S{a1Ψ1
o(~x) + a2Ψ2

o(~x)} = a1Ψ1
i (~x) + a2Ψ2

i (~x)

Linearity allows to decompose the object wave-function in ∞ sum of point sources:

Ψo(~x) =
∫ ∞

−∞
Ψo(~ζ)δ(~x −~ζ)d~ζ

Image wave-function Ψi(~x):

Ψi(~x) = S
{∫ ∞

−∞
Ψo(~ζ)δ(~x −~ζ)d~ζ

}
=
∫ ∞

−∞
Ψo(~ζ)S{δ(~x −~ζ)}d~ζ

Ψi(~x) =
∫ ∞

−∞
Ψo(~ζ)T (~x ;~ζ)d~ζ

where T (~x ;~ζ) = S{δ(~x −~ζ)}: Impulse Response of optical system S.
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Transfer function: property 2

Space invariance
Space invariance is realised when the image of a point source is independent of its
position in the object plane, i.e. when the point source moves in the object plane
its image moves similarly in the image plane without changing form and intensity.

T (~x ;~ζ) = T (~x −~ζ)

Ψi(~x) =
∫ ∞

−∞
Ψo(~ζ)T (~x −~ζ)d~ζ = Ψo(~x)⊗ T (~x)

Convolution integral spreads object information, degrades performance of optical
system.
In Fourier space:

Ψ̃i(~q) = Ψ̃o(~q)T̃ (~q)
T̃ (~q): transfer function of optical system.
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Pupils

y

z

DO PsPe

Ao Ai

SOe SOs

αo

Any optical system can be characterised by an entrance pupil Pe and an exit pupil Ps . The pupils
are the image of the opening aperture DO by the entrance and exit optical sub-systems SOe and
SOs . The portion of the object wave-function accepted by the optical system is limited by Pe, while
SOs limits the extend of the image wave-function. For a perfect optical system, the image of a
point source will be an Airy disk since only a portion of the incident spherical wave is transferred.
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Optical Path Length: OPL

The important feature is the optical path length (OPL).

OPL(P1P2) =
∫ P2

P1
n(−→r ) ds

1 OPL is measured in meters (n(~r) = c
v(~r) has no unit).

2 OPL is proportional to the time spent by the light ray to travel
from P1 to P2.

3 Surface of constant OPL −→ wavefront (surface of constant
travel time).

4 OPL is measured from the entrance pupil PE to the exit pupil PS .
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I

z

P
E

P
S

O

Σ
PSΣ

PE

-y
e

y
s

-y
s

y
e

Before PE the reference wavefront ΣPE is spherical (point source at O).
After PS the reference wavefront ΣPS is spherical (converges towards I).

For a perfect optical system, both the entrance ΣPE and exit ΣPS wavefronts are spherical. The
Optical Path Length form O to I is independent of the path.
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Optical Path Difference: OPD

The OPD measure the deviation of a wavefront from a perfect spherical wavefront (vacuum or
homogenous medium).
At the exit pupil PS , the spherical wavefront converging towards I defines the reference wavefront.

β
oO

y
s

z
s

P

I
z

I'

Σ
E

Σ
S

C

Σ'
S

P'

u

β
i

In the presence of aberrations the wavefront Σ
′
S is no more spherical. The Optical Path Difference,

P ′P (distance between the deformed Σ
′
S and spherical wavefront ΣS) introduces the phase shift δφ:

δφ = e2 π i OPD(xs ,ys )
λ

Pierre StadelmannJEMS-SWISSCH-1805 JongnySwitzerland TEM and STEM Image Simulation



Transfer function T̃ (~q)

The summation of the phase shifts δφ make up the transfer function T̃ (~q).

T̃ (~q) = e−ıχ(~q) = cos(χ(~q))− ı sin(χ(~q))︸ ︷︷ ︸
PCTF

Phase Contrast Transfer Function:

χ(~q) = π

[
−W20 λ (~q.~q) + W40

λ3 (~q.~q)2

2 + ...
]

Where:
W20 : defocus (z)
W40: spherical aberration (Cs)

At present TEM and STEM aberration correctors only correct axial aberrations,
i.e. aberrations that affect images of point sources located on the optical axis.
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Aberrations: how to define them

Some light rays emitted by object point Ao do not reach the image
at point Ai .

Position of Ai −→ intersection of the reference light ray (non
deviated) and the image plane.

The image of a point source is a spot whose shape and intensity
depend of the quality of the optical system.

Two types of aberrations:
1 Monochromatic.
2 Chromatic (λ dependent).

Pierre StadelmannJEMS-SWISSCH-1805 JongnySwitzerland TEM and STEM Image Simulation



Monochromatic aberrations

In order to evaluate the monochromatic aberrations one must define
a function characteristic of the optical system.

This function will depend on:
1 The selected reference planes.
2 The optical path followed by the light ray.
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Transverse geometric aberrations: ~ε
The transverse geometric aberrations are proportional to d

dθ wavefront
aberrations6:

εx = − f
ni

∂W
∂xs

εy = − f
ni

∂W
∂ys

f focal length.

The OPD’s introduced by all the aberrations of the imaging system are collected
in a function χ(~q) and the phase shift is7:

T̃ (~q) = e−ıχ(~q)

T̃ (~q) has been first employed by Abbe in his description of image formation
(1866).

6P(xs , ys) on the spherical reference wavefront can be characterised by the radial angle θ.
7The angle θ corresponds (through Bragg law) to a spatial frequency ~q, i.e. a distance in the back focal plane.
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OPD: spherical aberration

z
O

a b

f f

Αo
ΑiΑ'i

OPL’ < OPL

In presence of spherical aberration, the optical path length (OPL’) form Ao to A′i is smaller than
OPL from Ao to Ai . The wavefront at A′i is out-of-phase by8:

e−2πi Cs λ3(~q�~q)2
4

8With our plane wave choice e2πı~q�~r .
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OPD: underfocus

z
O

a b

f  f Δf

Αo
Αi Α'i

OPL’ > OPL

Δf

b2 Δf
f2Δb =

Underfocus weakens the objective lens, i.e. increases f. As a consequence the OPL from Ao to A′i
is larger:

e2πi ∆f λ(~q·~q)
2
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OPD: eccentricity

z
O

a b

f f

Αo

Αi

OPL’ < OPL

Α'o
Α'i

Δa
-b2

Δa
a2

Δb = 

On the contrary keeping f constant and moving the object by ∆a decreases the OPL.
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HRTEM / HRSTEM problem: aberrations of optical system
Reaching 0.05 nm resolution sets very strong conditions on aberrations correction.

Aberration figure of C34(0.5µm), phase jump
at π

4 .
Optical Transfer Function.

Notice that Optical Transfer Function (HRSTEM) transfers higher spatial frequencies than
Coherent Transfer Function (HRTEM). OTF is the autocorrelation of the PSF wi itself.
Autocorrelation doubles the domain of the function −→ the OTF (~q) domain is twice as large as
the TF (~q).
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P(~x): source intensity distribution as measured at the sample plane
Aberrations modify the source intensity distribution. STEM scans the corrected probe P(~x) on the
crystal entrance plane (I(~x) = Io(~x)⊗ P(~x)).

2 fold astigmatism. 3 fold astigmatism.

Coma. Corrected probe.
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jems: STEM probe formation and aberrations

STEM probe with C43 geometrical aberration (Krivanek) or W53
wavefront aberration or 4th order three-lobe (Haider).
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Dynamical scattering.
Optical system.
−→Comparing HRTEM and HRSTEM.
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Wavefront aberrations to 6th order (cartesian coordinates)

{z , π (u2 + v 2) λ} (defocus)
{W (1, 1), 2π(u cos(φ(1, 1)) + v sin(φ(1, 1)))}
{W (2, 2), πλ((u − v)(u + v) cos(2φ(2, 2)) + 2uv sin(2φ(2, 2)))}{

W (3, 1), 2
3π (u2 + v 2) λ2(u cos(φ(3, 1)) + v sin(φ(3, 1)))

}{
W (3, 3), 2

3πλ2 (u (u2− 3v 2) cos(3φ(3, 3))− v (v 2− 3u2) sin(3φ(3, 3)))
}{

W (4, 0), 1
2π (u2 + v 2)

2
λ3
}
(3rd order spherical aberration or C3){

W (4, 2), 1
2π (u2 + v 2) λ3((u − v)(u + v) cos(2φ(4, 2)) + 2uv sin(2φ(4, 2)))

}{
W (4, 4), 1

2πλ3 ((u4− 6v 2u2 + v 4) cos(4φ(4, 4)) + 4u(u − v)v(u + v) sin(4φ(4, 4)))
}{

W (5, 1), 2
5π (u2 + v 2)

2
λ4(u cos(φ(5, 1)) + v sin(φ(5, 1)))

}{
W (5, 3), 2

5π (u2 + v 2) λ4 (u (u2− 3v 2) cos(3φ(5, 3))− v (v 2− 3u2) sin(3φ(5, 3)))
}{

W (5, 5), 2
5πλ4 (u (u4− 10v 2u2 + 5v 4) cos(5φ(5, 5)) + v (5u4− 10v 2u2 + v 4) sin(5φ(5, 5)))

}{
W (6, 0), 1

3π (u2 + v 2)
3

λ5
}
(5th order spherical aberration or C5){

W (6, 2), 1
3π (u2 + v 2)

2
λ5((u − v)(u + v) cos(2φ(6, 2)) + 2uv sin(2φ(6, 2)))

}{
W (6, 4), 1

3πλ5 ((u6− 5v 2u4− 5v 4u2 + v 6) cos(4φ(6, 4)) + 4uv (u4− v 4) sin(4φ(6, 4)))
}{

W (6, 6), 1
3πλ5 ((u6− 15v 2u4 + 15v 4u2− v 6) cos(6φ(6, 6)) + 2uv (3u4− 10v 2u2 + 3v 4) sin(6φ(6, 6)))

}
jems describes wavefront aberrations to order 8. And provides a dictionary of equivalent notation:
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Wave-front aberrations to order 8

Wavefront aberrations up to order 8 can be introduced in HRTEM image
formation and HRSTEM probe formation.
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Aberrations dictionary (order 8)

Equivalent aberration notation (Krivanek, Rose/Haider, wave-front aberrations).
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Transfer Function T̃ (~q) and Optical Transfer Function ÕTF (~q)

HRTEM
coherent or partially coherent image formation process with coherent
or partially coherent incident wave.

TEM (T̃ (~q): Transfer Function):

Ψ̃i(~q) = Ψ̃o(~q)T̃ (~q)
Ψi(~x) =

∫
Ψ̃o(~q)T̃ (~q)e2πı~q·~xd~q
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Transfer Function T̃ (~q) and Optical Transfer Function ÕTF (~q)

HRSTEM
Incoherent image formation process with coherent or partially
coherent probe.
STEM (ÕTF (~q) = T̃ (~q)⊗ T̃ (−~q): Optical Transfer Function):

I(~x) = 〈Ψi(~x ; t)Ψ∗i (~x ; t)〉 (time average)
Ψi(~x ; t) = Ψo(~x ; t)⊗ T (~x) (T (~x) : PSF independent of t)
I(~x) = 〈[Ψo(~x ; t)⊗ T (~x)][Ψ∗o(~x ; t)⊗ T ∗(~x)]〉 (⊗ convolution.)
I(~x) = [T (~x)T ∗(~x)]⊗ 〈Ψo(~x ; t)Ψ∗o(~x ; t)〉 (T (~x) is time independent.)
〈Ψo(~x ; t)Ψ∗o(~x ; t)〉 = |Ψo(~x)|2 (complete spatial incoherence)
I(~x) = |Ψo(~x)|2⊗ [T (~x)T ∗(~x)]
I(~x) = Io(~x)⊗ [T (~x)T ∗(~x)] = Io(~x)⊗ P(~x) (P: probe intensity)

Probe function P(~x): source intensity distribution as measured at
the sample plane.
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Convolution, cross-correlation & autocorrelation

Convolution, cross-correlation & autocorrelation.
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STEM imaging: calculating I0(~x)

Numerous approximations are involved in calculating I0(~x) (object intensity):
Simple projected potential: no channeling effect (Weak Object
Approximation).
Multislice or Bloch-wave calculation: channeling + inelastic scattering
(absorption or optical potential).
Frozen lattice (phonon) approximation: atoms of super-cell displaced out of
equilibrium position, probe scanned on imaged area, intensity collected by
annular detector. Allows to simulate HAADF (High Angle Annular Dark
Field), BF (Bright Field), MAADF (Medium Angle Annular Dark Field), DPC
(Differential Phase Contrast), ...
References: Allen, Ishizuka, Nellist, Pennycook, Rosenauer, van Dyck, Wang.

Except the first 2 methods, usually rather long simulation time (faster calculations
using GPU).
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STEM imaging: graphene
Proj. pot. approx. Channeling calc.

Frozen lattice 5
conf.

Frozen lattice 10
conf.

Frozen lattice: sampling is critical and it is necessary to repeat the calculation (10 to 40 times) to
image most of the possible atomic configurations.
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Graphene: HAADF (100 kV, 70 -150 mrad)

Frozen lattice (∼400 s). Channeling (∼2 s).

One Si shows more contrast than 2 C atoms (i ∼ Z 2) : 142 compared to
∼ 2× 62.
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Graphene: HRTEM (100 kV, Cs − 0.033mm)

Weak phase object app., Cc = 0.5mm Multislice, Cs = −0.033mm, Cc = 0, no
thermal magnetic noise.

HRTEM does not display the strong contrast difference between one
Si and two C as given by HAADF STEM imaging.
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Conclusion

HRTEM & HRSTEM image simulations share many calculation methods. Both
require precise dynamical calculations that take into account elastic and inelastic
electron scattering.

Important difference to remember:
HRTEM: the wave-function W̃ (~q) in the image plane is the product of the
object wave-function Õ(~q) with the transfer function of the microscope T̃ (~q):

W̃ (~q) = Õ(~q)× T̃ (~q)
HRSTEM: image intensity I(~x) at the detector position is the convolution of
the object intensity Io(~x) with the probe intensity P(~x):

I(~x) = Io(~x)⊗ P(~x)
As a result we can expect a better spatial resolution and no phasing difficulties
using HRSTEM.

Thanks for your attention!
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